Пусть О - середина отрезка АВ. Опустим перпендикуляры к плоскости из точек А, В и О, соответствующие точки на плоскости обозначим A', B' и O', отрезки АА', ВВ' и ОО' - параллельны.Так как проекция сохраняет отношение длин коллинеарных отрезков, то A'O'/O'B'=АО/ОВ=1, т.е.O' - середина A'B'. Получается, что А'АВВ' - трапеция, где А'А и В'В - основания, а О'О - её средняя линия. Длина средней линии трапеции равна полусумме длин её оснований.
(2,4+7,6):2=5 (см)
ответ: расстояние от середины отрезка АВ до плоскости 5 сантиметров.
1.Пусть х - ∠ 1, тогда 2х - ∠2 угол.
Сумма острых углов прямоугольного треугольника равна 90°
х + 2х = 90
3х = 90
х = 30°
30° - ∠1
∠2 = 30 × 2 = 60°
ответ: 60°; 30°.
2. Прямоугольный треугольник - треугольник, у которого один угол прямой (то есть равен 90°.
Осталось найти ещё два острых.
Пусть х - ∠1, тогда х - 18 - ∠2
Сумма острых углов прямоугольного треугольника равна 90°
х + (х - 18) = 90
2х = 108
х = 54
54° - ∠1
54 - 18 = 36° - ∠2
ответ: 36°; 54°; 90°
3.Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> Гипотенуза = 6 × 2 = 12 см
ответ: 12 см
4. Сумма острых углов прямоугольного треугольника равна 90°
А так как треугольник равнобедренный => ∠1 = ∠2 = 90 ÷ 2 = 45°
Один угол прямой в прямоугольном треугольнике => ∠3 = 90°
ответ: 45°; 45°; 90°.
5. Сумма острых углов прямоугольного треугольника равна 90°
=> ∠А = 90 - 60 = 30°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> АВ = 6 × 2 = 12 см
ответ: 12 см
6. Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°
=> ∠А = 30°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
ответ: 60°.
(2,4+7,6):2=5 (см)
ответ: расстояние от середины отрезка АВ до плоскости 5 сантиметров.