В треугольниках ABC и A1 B1 C1 сторона AB равна стороне A1 B1 Угол ABC равен углу А1 B1 C1 угол BAC равен углу B1 A1 C1 Докажите что эти треугольники равны.
проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
в треугольнике на рисунке приложения
катет вс=30 см, а вн=18 - его проекция на гипотенузу.
bc²=ав•нв
900=ав•18
ав=900: 18=50 см
высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. из подобия следует отношение:
ан: ас=ас: ав
ан=50-18=32
32: ас=ас: 50 ⇒ ас²=32•50
ас=√1600=40 см
если обратить внимание на отношение катета и гипотенузы 3: 5 в ∆ всн, увидим, что этот треугольник - египетский. отсюда следует ав=50 см, (т.к. меньший катет=30). а ас=40 см. получим длины сторон треугольника, отношение которых 3: 4: 5.
проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
в треугольнике на рисунке приложения
катет вс=30 см, а вн=18 - его проекция на гипотенузу.
bc²=ав•нв
900=ав•18
ав=900: 18=50 см
высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. из подобия следует отношение:
ан: ас=ас: ав
ан=50-18=32
32: ас=ас: 50 ⇒ ас²=32•50
ас=√1600=40 см
если обратить внимание на отношение катета и гипотенузы 3: 5 в ∆ всн, увидим, что этот треугольник - египетский. отсюда следует ав=50 см, (т.к. меньший катет=30). а ас=40 см. получим длины сторон треугольника, отношение которых 3: 4: 5.
подробнее - на -
. вспомним общий вид уравнения сферы.
уравнение сферы с заданным центром и радиусом имеет вид:
(x - x0)^2 + (y - y0)^2 + (z - z0)^2 = r^2,
где x0, y0, z0 - координаты центра сферы, а r - ее радиус.
2. составим уравнение сферы с центром в точке с (2; 0; -3) и радиусом r = 4 см.
подставим координаты центра и значение радиуса в общее уравнение сферы:
(x - 2)^2 + (y - 0)^2 + (z - (-3))^2 = 4^2.
проведем необходимые преобразования (раскроем лишние скобки и возведем в квадрат значение радиуса) и получим уравнение сферы:
(x- 2)^2 + (y )^2 + (z + 3)^2 = 16.