угол между плоскостями квадрата и прямоугольника ---это угол BAC на рисунке
(т.к. АВ _|_ их общей стороне---как стороны квадрата и АС _|_ их общей стороне---как стороны прямоугольника...)
в треугольнике BAC все стороны известны: АВ---сторона квадрата = 36 = 6*6 => общая сторона = 6
АС---сторона прямоугольника = 96/6 = 16
ВС = 14
по т.косинусов: 14^2 = 6^2 + 16^2 - 2*6*16*cos(BAC)
12*16*cos(BAC) = 36 + 16^2 - 14^2 = 36 + (16-14)(16+14) = 36 + 2*30 = 36+60 = 96
cos(BAC) = 96 / (12*16) = 6/12 = 1/2
угол ВАС = 60 градусов
угол между плоскостями квадрата и прямоугольника ---это угол BAC на рисунке
(т.к. АВ _|_ их общей стороне---как стороны квадрата и АС _|_ их общей стороне---как стороны прямоугольника...)
в треугольнике BAC все стороны известны: АВ---сторона квадрата = 36 = 6*6 => общая сторона = 6
АС---сторона прямоугольника = 96/6 = 16
ВС = 14
по т.косинусов: 14^2 = 6^2 + 16^2 - 2*6*16*cos(BAC)
12*16*cos(BAC) = 36 + 16^2 - 14^2 = 36 + (16-14)(16+14) = 36 + 2*30 = 36+60 = 96
cos(BAC) = 96 / (12*16) = 6/12 = 1/2
угол ВАС = 60 градусов
Р = 4,8 * 3 = 14,4 (см)
ответ: 14,4 см - периметр Δ.
2) В равнобедренном Δ боковые стороны равны
7,3 + 7,3 = 14,6 (см) - сумма двух боковых сторон
22,3 - 14,6 = 7,7 (см)
ответ: 7,7 см - основание Δ
3) Углы при основании равнобедренного треугольника равны.
⇒ ∠А = ∠С.
Сумма углов треугольника = 180°=
⇒∠А = ∠С = (180° - 74°) : 2 = 106° : 2 = 54°
Биссектриса делит угол пополам,
⇒ ∠ВАD = ∠САD = 54° : 2 = 27°
ответ: ∠САD = 27°
4) Медиана делит противоположную сторону пополам
⇒ DС = ВD = 12 (см);
ВС= 12+12 = 24 (см)
АВ = ВС (по условию)
АВ = 24см
AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон
А дальше не решается, задача написана не до конца.