1)Аксиома на плоскости через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной 3)1.док-во преположим обратное. угол 1 не равен углу 2 2.доп.постр. построим через точку А прямую а1 которая пересекается с прямой C под углом равным углу первому, то есть угол 3 равен углу 1 3.получили: прямая а1 и в с-секущая угол 1 и угол 3 внутр.накрест лежащие угол 1 равен углу 3, след.а1 || в по признаку 4.получили: через точку А не лежащую на прямой B проходит две прямые а и a1 параллельные прямой в(а ||в по усл.,а1||в по док.) что противоречит аксиомы параллельных прямых след. предположение сделано неверно и остается утверждать что угол 1 равен углу 2 это точно правильно,так как уже проходили)
При пересечении параллельных прямых секущей образуется 8
углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны. Пусть х - меньший из них, тогда у = х + 30°.
x + x + 30° = 180°
2x = 150°
x = 75°
∠1 = ∠5 = ∠3 = ∠7 = 75°
у = 180° - 75° = 105°
∠2 = ∠6 = ∠4 = ∠8= 105°
на плоскости через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной
3)1.док-во
преположим обратное. угол 1 не равен углу 2
2.доп.постр.
построим через точку А прямую а1 которая пересекается с прямой C под углом равным углу первому, то есть угол 3 равен углу 1
3.получили:
прямая а1 и в
с-секущая
угол 1 и угол 3 внутр.накрест лежащие
угол 1 равен углу 3,
след.а1 || в по признаку
4.получили:
через точку А не лежащую на прямой B проходит две прямые а и a1 параллельные прямой в(а ||в по усл.,а1||в по док.) что противоречит аксиомы параллельных прямых след. предположение сделано неверно и остается утверждать что угол 1 равен углу 2
это точно правильно,так как уже проходили)