В треугольнике abc ab=7 см, bc=6 см, ac=10 см. В треугольнике mkp pm=18 см, km=30 см, pk=21 см. Найдите углы треугольника abc, если угол m =44 градусам, угол k =35 градусам
Углы ASB и BSC прямые, следовательно ребро BS перпендикулярно плоскости грани ASC. "Положим" пирамиду на грань ASC. Тогда высота пирамиды LSKM - ребро SL, а высота пирамиды ВASC - ребро BS. Отношение высот пирамид LS/BS=1/4. Площадь основания пирамиды LSKM равна (1/2)*SK*SM*Sin(ASC)= (1/2)*(1/2)SA*(1/5)SC*Sin(ASC). Площадь основания пирамиды ВASC равна (1/2)*SA*SC*Sin(ASC). Тогда Vlskm=(1/3)*(1/2)*(1/2)SA*(1/5)SC*Sin(ASC)*LS= (1/60)*SA*SC*Sin(ASC)*(1/4)*BS=(1/240)*SA*SC*Sin(ASC)*BS. Vbsac=(1/3)*(1/2)*SA*SC*Sin(ASC)*BS. Vlskm/Vbsac=1/40. Так как Vlskm=Vsklm, a Vbsac=Vsabc, то ответ: Vsklm/Vsabc=1/40.
Дано: треугольник АВС - прямоугольный, АВ - гипотенуза, АС < ВС, АС = 10 см, Р - центр вписанной окружности, K, L, M - точки касания сторон АС, ВС, АВ - соответственно, РМ = 3 см, О - центр описанной окружности. Решение: 1. Рассмотрим LCKP - вкадрат по свойству радиуса, проведенного в точку касания, имеем КС = LC = 3 см, АК = АС - КС = 10 - 3 = 7 см. 2. По свойству касательных имеем КА = МА = 7 см, МВ = LB = х, LC = KC = 3 см, тогда по теореме Пифагора для прямоугольного треугольника АВС плучаем АС^2 + BC^2 = AB^2 10^2 + (x + 3)^2 = (x + 7)^2 100 + x^2 + 6x + 9 = x^2 + 14x + 49 8x = 60 x = 15/2 см, АВ = 15/2 + 7 = 29/2 см. 3. Зная, что центр окружности, описанной около прямоугольного треугольника, совпадает с серединой его гипотенузы, находим АО = АВ/2 = 0,5*29/2 = 29/4 см. ответ: 29/4 см.
"Положим" пирамиду на грань ASC. Тогда высота пирамиды LSKM - ребро SL, а высота пирамиды ВASC - ребро BS. Отношение высот пирамид LS/BS=1/4.
Площадь основания пирамиды LSKM равна (1/2)*SK*SM*Sin(ASC)=
(1/2)*(1/2)SA*(1/5)SC*Sin(ASC).
Площадь основания пирамиды ВASC равна (1/2)*SA*SC*Sin(ASC).
Тогда Vlskm=(1/3)*(1/2)*(1/2)SA*(1/5)SC*Sin(ASC)*LS=
(1/60)*SA*SC*Sin(ASC)*(1/4)*BS=(1/240)*SA*SC*Sin(ASC)*BS.
Vbsac=(1/3)*(1/2)*SA*SC*Sin(ASC)*BS.
Vlskm/Vbsac=1/40.
Так как Vlskm=Vsklm, a Vbsac=Vsabc, то
ответ: Vsklm/Vsabc=1/40.
треугольник АВС - прямоугольный,
АВ - гипотенуза,
АС < ВС,
АС = 10 см,
Р - центр вписанной окружности,
K, L, M - точки касания сторон АС, ВС, АВ - соответственно,
РМ = 3 см,
О - центр описанной окружности.
Решение:
1.
Рассмотрим LCKP - вкадрат по свойству радиуса, проведенного в точку касания, имеем
КС = LC = 3 см,
АК = АС - КС = 10 - 3 = 7 см.
2.
По свойству касательных имеем
КА = МА = 7 см, МВ = LB = х, LC = KC = 3 см,
тогда по теореме Пифагора для прямоугольного треугольника АВС плучаем
АС^2 + BC^2 = AB^2
10^2 + (x + 3)^2 = (x + 7)^2
100 + x^2 + 6x + 9 = x^2 + 14x + 49
8x = 60
x = 15/2 см,
АВ = 15/2 + 7 = 29/2 см.
3.
Зная, что центр окружности, описанной около прямоугольного треугольника,
совпадает с серединой его гипотенузы, находим
АО = АВ/2 = 0,5*29/2 = 29/4 см.
ответ:
29/4 см.