Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
0) Обозначим одну точку как H, это будет ортоцентр. А другую, как O, это будет центр описанной окружности.
Вспомним два свойства ортоцентра:
1. Точка, симметричная ортоцентру относительно прямой, содержащей сторону треугольника, лежит на описанной около треугольника окружности.
2. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной около треугольника окружности и диаметрально противоположна вершине треугольника, противолежащей данной стороне.
1) Построим точку H' симметричную H относительно прямой а. Для этого: проводим полуокружность с центром H и радиусом (p) большим, чем расстояние от H до прямой а. Из точек пересечения полуокружности с прямой, проводим окружности с радиусом (p). Они пересеклись в двух точках, одна H, другая H'.
По свойству ортоцентра (1.) H' лежит на описанной окружности.
2) Проведём окружность с центром в точке O и радиусом OH'. Это и есть описанная окружность. По условию, точки пересечения этой окружности с прямой a, будут вершинами треугольника. Обозначим эти вершины как A и B. Построим сторону AB.
3) Определим середину AB. Для этого: проводим окружности с центрами в точках A и B, с равными радиусами (r), которые больше, чем половина AB. Через точки пересечения этих двух окружностей проводим прямую q. Точку пересечения прямых q и а обозначим как M. Это и есть середина AB.
4) Построим последнюю вершину треугольника C. Проводим прямую k через точки M и H. Точку пересечения k с описанной окружностью обозначим, как H₁. По свойству ортоцентра (2.) точка H₁ диаметрально противоположная точке С. Проводим через точки H₁ и O прямую t, точку пересечения прямой t и окружности обозначим как С. Это и есть последняя вершина.
5) Построим стороны AC и BC треугольника ABC. Задание выполнено.
0) Обозначим одну точку как H, это будет ортоцентр. А другую, как O, это будет центр описанной окружности.
Вспомним два свойства ортоцентра:
1. Точка, симметричная ортоцентру относительно прямой, содержащей сторону треугольника, лежит на описанной около треугольника окружности.
2. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной около треугольника окружности и диаметрально противоположна вершине треугольника, противолежащей данной стороне.
1) Построим точку H' симметричную H относительно прямой а. Для этого: проводим полуокружность с центром H и радиусом (p) большим, чем расстояние от H до прямой а. Из точек пересечения полуокружности с прямой, проводим окружности с радиусом (p). Они пересеклись в двух точках, одна H, другая H'.
По свойству ортоцентра (1.) H' лежит на описанной окружности.
2) Проведём окружность с центром в точке O и радиусом OH'. Это и есть описанная окружность. По условию, точки пересечения этой окружности с прямой a, будут вершинами треугольника. Обозначим эти вершины как A и B. Построим сторону AB.
3) Определим середину AB. Для этого: проводим окружности с центрами в точках A и B, с равными радиусами (r), которые больше, чем половина AB. Через точки пересечения этих двух окружностей проводим прямую q. Точку пересечения прямых q и а обозначим как M. Это и есть середина AB.
4) Построим последнюю вершину треугольника C. Проводим прямую k через точки M и H. Точку пересечения k с описанной окружностью обозначим, как H₁. По свойству ортоцентра (2.) точка H₁ диаметрально противоположная точке С. Проводим через точки H₁ и O прямую t, точку пересечения прямой t и окружности обозначим как С. Это и есть последняя вершина.
5) Построим стороны AC и BC треугольника ABC. Задание выполнено.