1 - периметр это сумма длин всех сторон. в равностороннем треуг. все стороны одинак стало быть 24 делим на 3 = 8 2 итак, в равнобедренном треуг только две стороны равны. нужно вычислить третью, которая является в равнобедренном основанием надо 80 - 30 -30 = 20. то есть если стороны равны 30 м, то основание 20 3 здесь наоборот известно основание. для того чтобы определить что осталось на две боковые стороны нужно вычесть из 80 длину основания 40м. получилось 40. но это две стороны вместе, а нам нужна одна. поэтому 40 делим на 2 = 20 м одна сторона 4. с этим придется порисовать чуток. итак, известно что ек это медиана (такой отрезок, который соединяет угол с СЕРЕДИНОЙ противоположной стороны). есть такое правило, которое говорит нам о том что в равнобедренном треугольнике медиана является и бисскетрисой (делит угол ПОПОЛАМ) и высотой (то есть когда из угла к стороне проведен отрезок под углом 90 градусов) и в любой последовательности. суть не меняется. так вот исходя из этого правила я воспользовавшись тем что ек это биссектриса могу с уверенностью сказать, что угол кес равен 44 градусам, так как известно что полностью угол е равен 88 градусов, а биссектриса ек делит его пополам. на всякий случай проверим. Сумма всех углов треугольника = 180 градусов. а углы при основании равнобедренного треугольника равны. проверяем 46+46+88 = 180. или по другому, если рассматривать треугольник екд, то 180 - 90-46-44 = 0. все верно
Пусть в данной трапеции основания ВС и АD. Определение: Высота трапеции — расстояние между прямыми, на которых лежат основания трапеции, т.е. любой общий перпендикуляр этих прямых. Тогда высота СН, опущенная из С на AD, равна АО=60 мм. Высота равнобедренной трапеции, опущенная из тупого угла, делит основание на отрезки, больший из которых равен длине средней линиитрапеции. АН=средней линии трапеции. Т.к. ∆ АСН прямоугольный и отношение катета к гипотенузе равно 3:5, этот треугольник из троек Пифагора ( египетский), АН=80 мм ( и по т.Пифагора получим тот же результат) Тогда АН равна длине средней линии. Площадь трапеции равна произведению высоты на среднюю линию, т.е. на полусумму оснований. S=60•80=4800 мм² или 48 см²
Чтобы использовать все данные из условия, проведем АО к продолжению ВС в сторону В. Тогда ОС равно 80 мм, ВС=80-45=35 мм Поскольку трапеция равнобедренная, ∆ АОВ=∆ СHD ( по равным катету и гипотенузе), и АД=80+45=125 мм Тогда полусумма оснований (ВС+АD):2=(35+125):2=80 (мм) Площадь, естественно, тоже будет 4800 мм²
2 итак, в равнобедренном треуг только две стороны равны. нужно вычислить третью, которая является в равнобедренном основанием надо 80 - 30 -30 = 20. то есть если стороны равны 30 м, то основание 20
3 здесь наоборот известно основание. для того чтобы определить что осталось на две боковые стороны нужно вычесть из 80 длину основания 40м. получилось 40. но это две стороны вместе, а нам нужна одна. поэтому 40 делим на 2 = 20 м одна сторона
4. с этим придется порисовать чуток. итак, известно что ек это медиана (такой отрезок, который соединяет угол с СЕРЕДИНОЙ противоположной стороны). есть такое правило, которое говорит нам о том что в равнобедренном треугольнике медиана является и бисскетрисой (делит угол ПОПОЛАМ) и высотой (то есть когда из угла к стороне проведен отрезок под углом 90 градусов) и в любой последовательности. суть не меняется. так вот исходя из этого правила я воспользовавшись тем что ек это биссектриса могу с уверенностью сказать, что угол кес равен 44 градусам, так как известно что полностью угол е равен 88 градусов, а биссектриса ек делит его пополам. на всякий случай проверим. Сумма всех углов треугольника = 180 градусов. а углы при основании равнобедренного треугольника равны. проверяем 46+46+88 = 180. или по другому, если рассматривать треугольник екд, то 180 - 90-46-44 = 0. все верно
Определение: Высота трапеции — расстояние между прямыми, на которых лежат основания трапеции, т.е. любой общий перпендикуляр этих прямых.
Тогда высота СН, опущенная из С на AD, равна АО=60 мм.
Высота равнобедренной трапеции, опущенная из тупого угла, делит основание на отрезки, больший из которых равен длине средней линиитрапеции.
АН=средней линии трапеции.
Т.к. ∆ АСН прямоугольный и отношение катета к гипотенузе равно 3:5, этот треугольник из троек Пифагора ( египетский), АН=80 мм ( и по т.Пифагора получим тот же результат)
Тогда АН равна длине средней линии.
Площадь трапеции равна произведению высоты на среднюю линию, т.е. на полусумму оснований.
S=60•80=4800 мм² или 48 см²
Чтобы использовать все данные из условия, проведем АО к продолжению ВС в сторону В.
Тогда ОС равно 80 мм, ВС=80-45=35 мм
Поскольку трапеция равнобедренная, ∆ АОВ=∆ СHD ( по равным катету и гипотенузе), и АД=80+45=125 мм
Тогда полусумма оснований (ВС+АD):2=(35+125):2=80 (мм)
Площадь, естественно, тоже будет 4800 мм²