1) Перший малюнок: оскільки ОМ = ОК, треба довести, що кут КОМ є розгорнутим. Розглянемо рівні трикутники ОАМ і ОВК, у них рівні відповідні кути ﮮКОМ = ﮮМОА. Також рівні вертикальні кути ﮮВОС = ﮮАОD, утворені при перетині відрізків АВ і СD. Розглянемо трикутники COM і DOK. У них ﮮOCA = ﮮBDO. Оскільки за умовою АМ = ВК, а AC = BD, з основної властивості довжини відрізка випливає, що AC = AM + MC = BD = BK + KD, тобто МС = KD, трикутники за двома сторонами та кутом між ними рівні, таким чином ﮮCOM = ﮮDOK. За основною властивістю величини кута маємо ﮮKOB + ﮮBOC + ﮮCOM + ﮮCOM + ﮮMOA + ﮮAOD + ﮮDOK = 360°, 2(ﮮKOB + ﮮBOC + ﮮCOM) = 360°, ﮮKOB + ﮮBOC + ﮮCOM = 180°. Відрізки ОК і ОМ мають спільний початок та утворюють розгорнутий кут, значить точки К,О,М лежать на одній прямій.
2) Другий малюнок: проведемо медіану AM. З властивості медіани відомо, що вона ділить сторону на дві рівні частини (BM=MC) Позначимо AB за 2х, тоді AB=BC=2x і BM=MC=x. Звідси: P(ABM)=AB+BM+AM=2x+x+AM=3x+AM P(ACM)=AC+CM+CM=20+x+AM Тепер можливі два варіанта розв'язку, які відрізняються вибором трикутника з меншим периметром: Перший варіант: P(ABM)-P(ACM)=6 см 3х+АМ-(20+х+АМ)=6 2x-20=6 2x=26 Як описано вище - AB=BC=2x, тоді AB=26 см і BC=26 см Другий варіант: P(ACM)-P(ABM)=6 20+x+AM-(3x+AM)=6 2x=14 AB=14 см, BC=14 см
3) Третій малюнок: нехай AB=x, BC=(x+2), AC=(x+1), BM=MC, ∠ABN=∠NBC, BN⊥AM. ΔABM - рівнобедрений, оскільки в нього збігається бісектриса і висота, проведені з вершини B, тоді ВМ=АВ=х, тоді МС=2. Отже, АВ=2 см, ВС=4 см, АС=3 см
В треугольнике АВС известны длины сторон АВ =8 и АС = 64.
Точка О центр окружности, описанной около треугольника АВС. Прямая ВD перпендикулярная прямой АО , пересекает сторону АС в точке D. Найдите СD.
–––––––––––––––––
Продлим ВD до пересечения с окружностью в точке М.
Хорда МВ перпендикулярна радиусу ОА ( по условию) и при пересечении с ним делится пополам ( свойство).
Тогда радиус ОА делит угол ВОМ пополам. Дуги АМ и АВ, на которые опираются равные центральные углы МОА и ВОА, также равны.
Отсюда следует равенство углов АВМ и ВСА - опираются на равные дуги.
В треугольниках АВС и АВD угол ВАС общий, ∠АВD=∠ВСА ⇒
∆ АВС ~ ∆ АВD по 1-му признаку подобия. Из подобия следует отношение:
АВ:АС=АD:АВ
АВ²=АD•AC
64=AD•64⇒ AD=1
CD=64-1=63 (ед. длины)
2) Другий малюнок: проведемо медіану AM. З властивості медіани відомо, що вона ділить сторону на дві рівні частини (BM=MC) Позначимо AB за 2х, тоді AB=BC=2x і BM=MC=x. Звідси:
P(ABM)=AB+BM+AM=2x+x+AM=3x+AM
P(ACM)=AC+CM+CM=20+x+AM
Тепер можливі два варіанта розв'язку, які відрізняються вибором трикутника з меншим периметром:
Перший варіант:
P(ABM)-P(ACM)=6 см
3х+АМ-(20+х+АМ)=6
2x-20=6
2x=26
Як описано вище - AB=BC=2x, тоді AB=26 см і BC=26 см
Другий варіант:
P(ACM)-P(ABM)=6
20+x+AM-(3x+AM)=6
2x=14
AB=14 см, BC=14 см
3) Третій малюнок: нехай AB=x, BC=(x+2), AC=(x+1), BM=MC, ∠ABN=∠NBC, BN⊥AM. ΔABM - рівнобедрений, оскільки в нього збігається бісектриса і висота, проведені з вершини B, тоді ВМ=АВ=х, тоді МС=2. Отже, АВ=2 см, ВС=4 см, АС=3 см