Применим известный метод построения срединного перпендикуляра ( деления отрезка пополам).
Из вершины А,как из центра, на сторонах АВ и АС отмечаем циркулем равные отрезки АЕ и АТ.
Из т.т. Е и Т как из центров проводим полуокружности. Соединим точки их пересечения прямой. Они пройдут через А и пересекут ВС в точке К.
АК - биссектриса, т.к. треугольник АЕТ - равнобедренный по построению, АК - срединный перпендикуляр, для равнобедренного треугольника он медиана и биссектриса.
б) медианы ВМ
Для построения медианы ВМ по вышеописанному методу находим середину АС и соединяем с вершиной В.
в) высоты СН.
Для построения высоты находим точку О - середину АС. Из нее как из центра проводим окружность радиусом АО. АО=ОС, АС - диаметр. Точка пересечения окружности с АВ - основание высоты СН, т.к. вписанный угол АНС опирается на диаметр и равен 90°.
обозначим А - (см) - катет 1, против известного угла Б - (см) - катет 2, соприкасается с известным углом С - (см) - гипотенуза
1) Определить значение тангенса угла ТАН (известный угол)
2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б - если известен катет (А) лежащий против известного угла, то находишь катет Б Б = А / ТАН (известный угол) - если известен прилежащий катет (Б) к известному углу, то находишь катет А А = Б * ТАН (известный угол)
3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2, откуда С = корень квадратный из ( А^2 + Б^2)
4) Определить ПЕРИМЕТР = А+Б+С (см)
5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)
Построение с циркуля и линейки.
а) биссектрисы АК.
Применим известный метод построения срединного перпендикуляра ( деления отрезка пополам).
Из вершины А,как из центра, на сторонах АВ и АС отмечаем циркулем равные отрезки АЕ и АТ.
Из т.т. Е и Т как из центров проводим полуокружности. Соединим точки их пересечения прямой. Они пройдут через А и пересекут ВС в точке К.
АК - биссектриса, т.к. треугольник АЕТ - равнобедренный по построению, АК - срединный перпендикуляр, для равнобедренного треугольника он медиана и биссектриса.
б) медианы ВМ
Для построения медианы ВМ по вышеописанному методу находим середину АС и соединяем с вершиной В.
в) высоты СН.
Для построения высоты находим точку О - середину АС. Из нее как из центра проводим окружность радиусом АО. АО=ОС, АС - диаметр. Точка пересечения окружности с АВ - основание высоты СН, т.к. вписанный угол АНС опирается на диаметр и равен 90°.
Высота построена.
А - (см) - катет 1, против известного угла
Б - (см) - катет 2, соприкасается с известным углом
С - (см) - гипотенуза
1) Определить значение тангенса угла ТАН (известный угол)
2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б
- если известен катет (А) лежащий против известного угла, то находишь катет Б
Б = А / ТАН (известный угол)
- если известен прилежащий катет (Б) к известному углу, то находишь катет А
А = Б * ТАН (известный угол)
3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2,
откуда С = корень квадратный из ( А^2 + Б^2)
4) Определить ПЕРИМЕТР = А+Б+С (см)
5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)