Осевое сечение кругового цилиндра - прямоугольник, стороны которого х и 3х, а диагональ равна 4√10.
Рассмотрим два случая. 1) х-диаметр основания, тогда 3х- его высота.
тогда х²+(3х)²=16*10, откуда х²=16, а х=4, значит, радиус основания равен
4/2=2 , а высота 3*4=12.
Тогда объем цилиндра равен πr²h=π2²12=48π
2)Рассмотрим второй случай, когда х-высота, тогда 3х- диаметр основания. Значит, х²+(3х)²=16*10, х=4, Значит, высота равна 4, тогда диаметр основания цилиндра 3*4=12, а радиус 12/2=6 и объем цилиндра π6²*4=144π
АГ = 26 см
БВ = 10 см
Боковая сторона АБ по условию перпендикулярна диагонали БГ
Е - середина стороны АГ
АЕ = АГ/2 = 13 см
ЖЕ = БЗ = БВ/2 = 5 см
АЖ = АЕ - АЖ = 13 - 5 = 8 см
ГЖ = АГ - АЖ = 26 - 8 = 18 см
---
по т. Пифагора для ΔАБГ
АГ² = АБ² + БГ²
26² = АБ² + БГ²
---
по т. Пифагора для ΔАБЖ
АБ² = АЖ² + БЖ²
АБ² = 8² + БЖ²
---
по т. Пифагора для ΔЖБГ
БГ² = ЖБ² + ЖГ²
БГ² = ЖБ² + 18²
---
26² = АБ² + БГ²
АБ² = 8² + БЖ²
БГ² = ЖБ² + 18²
Сложим все три уравнения
26² + АБ² + БГ² = АБ² + БГ² + 8² + БЖ² + ЖБ² + 18²
26² = 8² + 2*БЖ² + 18²
2*БЖ² = 26² - 8² + 18² = 676 - 64 - 324 = 288
БЖ² = 144
БЖ = 12 см, это высота трапеции
---
Площадь
П = 1/2(АГ + БВ)*БЖ = 1/2*(26 + 10)*12 = 36*6 = 216 см²
Осевое сечение кругового цилиндра - прямоугольник, стороны которого х и 3х, а диагональ равна 4√10.
Рассмотрим два случая. 1) х-диаметр основания, тогда 3х- его высота.
тогда х²+(3х)²=16*10, откуда х²=16, а х=4, значит, радиус основания равен
4/2=2 , а высота 3*4=12.
Тогда объем цилиндра равен πr²h=π2²12=48π
2)Рассмотрим второй случай, когда х-высота, тогда 3х- диаметр основания. Значит, х²+(3х)²=16*10, х=4, Значит, высота равна 4, тогда диаметр основания цилиндра 3*4=12, а радиус 12/2=6 и объем цилиндра π6²*4=144π
ответ. Задача имеет два решения. 48π; 144π
Дерзайте.)