Дана точка А(-1,5;2). а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2). б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2). в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат. То есть это точка D(1,5;-2).
Рисунок самостоятельно начертишь. 1) Рассм треуг АВД, в нем уг В =90*, уг Д=30*, след уг А=60* ( по теореме о сумме углов в треугольнике) 2) В трап АВСД уг Д=60* ( по условию ВД - биссектриса) 3) трап АВСД - р/б так как в ней углы при основании АД равны по 60* 4) Уг СВД=уг ВДА=30* (как накрестлеж при BC||АД и сек ВД), след треуг ВСД - р/б (по признаку) с осн ВД. 5) из 3,4 следует, что АВ=ВС=СД 6) Р(АВСД)= 3*АВ+АД=60 (см) 7) Рассм треуг АВД ( уг В=90* по усл, уг Д=30* по усл). АД=2*АВ (по свойству катета, леж против угла в 30*) 8) на основании пп 6,7) получаем: 3*АВ + 2*АВ = 60 ; 5*АВ=60 ; АВ=12 (см)
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
То есть это точка D(1,5;-2).
1) Рассм треуг АВД, в нем уг В =90*, уг Д=30*, след уг А=60* ( по теореме о сумме углов в треугольнике)
2) В трап АВСД уг Д=60* ( по условию ВД - биссектриса)
3) трап АВСД - р/б так как в ней углы при основании АД равны по 60*
4) Уг СВД=уг ВДА=30* (как накрестлеж при BC||АД и сек ВД), след треуг ВСД - р/б (по признаку) с осн ВД.
5) из 3,4 следует, что АВ=ВС=СД
6) Р(АВСД)= 3*АВ+АД=60 (см)
7) Рассм треуг АВД ( уг В=90* по усл, уг Д=30* по усл). АД=2*АВ (по свойству катета, леж против угла в 30*)
8) на основании пп 6,7) получаем:
3*АВ + 2*АВ = 60 ;
5*АВ=60 ;
АВ=12 (см)