Через две пересекающиеся прямые можно провести ровно одну плоскость. Две прямые из условия лежат в некоторой плоскости a. Пусть третья прямая пересекает каждую из них и не проходит через точку A их пересечения. Тогда у третьей прямой есть хотя бы две общие точки с плоскостью a (как раз эти точки пересечения). Известно, что прямая, имеющая с плоскостью хотя бы две общие точки, лежит в этой плоскости. Тогда третья прямая также лежит в а. Следовательно, какую бы прямую, пересекающую две данные прямые и не проходящую через А мы ни выбрали, она будет целиком лежать в плоскости а, что и требовалось доказать.
А1С1 – диагональ квадрата со стороной, равной 6 см
Формула диагонали квадрата d=a√2 ⇒
A1C1=6√2
B1D1=A1C1=6√2
Проведем в боковых гранях диагонали AD1 и АВ1
Боковые ребра параллелепипеда равны, основание – квадрат по условию ⇒
треугольник В1АD1 равнобедренный, т.к. диагонали равных граней равны. Диагонали квадрата равны и точкой пересечения делятся пополам. OB1=OD1=3√2
О - центр А1С1. ⇒
АО - медиана ∆ D1AB1. По т.Пифагора из треугольника АОВ1 найдем длину искомого отрезка
АО=√(AB1*-ОВ1*)=√(100-18)=√82