Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
4. Меньшая диагональ ромба равна 12 см, а один из углов - 60°. Найдите вторую диагональ и сторону ромба.
ΔABD равнобедренный (AB = AD как стороны ромба) и ∠BAD = 60°, значит ΔABD равносторонний. Тогда АВ = AD = BD = 12 см.
По свойству параллелограмма сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма: AC² + BD² = 4·AB² AC² = 4·12² - 12² = 3·12² AC = 12√3 см
5. Большее основание и большая боковая сторона прямоугольной трапеции равны а см, а один из углов - 60°. Найдите площадь трапеции.
AD = DC = a см, ∠ADC = 60°, значит ΔADC равносторонний. Проведем высоту трапеции СН. Она является высотой и медианой равностороннего треугольника ADC, тогда СН = а√3/2 см, АН = НD = а/2. СН ║ АВ (как перпендикуляры к одной прямой) и СН = АВ (как высоты трапеции), тогда АВСН - прямоугольник, значит, ВС = АН = а/2 см. Sabcd = (AD + BC)/2 · CH = (a + a/2)/2 · a√3/2 = 3a²√3/8 см²
20
Объяснение:
Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
О(0;0;0)
B1 (3; 4; 4)
В(3;-4;4)
OB=√((xb - xo)^2 + (yb - y0)^2 + (zb - zo)^2) = √((3 - 0))^2 + (-4 - 0)^2 + (4 - 0)^2)=√(9+16+16) = √41
OB=OB1=√41 -симметричны
BB1 = √((xb1 - xb)^2 + (yb1 - yb)^2 + (zb1 - zb)^2)=
=√((3 - 3))^2 + (4 - (-4))^2 + (4 - 4)^2)=√64 = 8
По т.Герона S=√(p(p-a)*(p-b)*(p-c))
p=P/2=(8+2√41)/2 = 4+√41
S=√(( 4+√41)( 4+√41-√41)^2*( 4+√41-8)) = √(16*(41-16)) = 4*5
Sabcd = a · h₁ Sabcd = b · h₂
12 · h₁ = 72 8 · h₂ = 72
h₁ = 72/12 = 6 см h₂ = 72/8 = 9 см
2. Площадь ромба со стороной 18 см и высотой 7 см равна площади прямоугольника со стороной 14 см. Найдите периметр прямоугольника.
Sabcd = Sklmn
AD · BH = a · b
18 · 7 = 14 · b
b = 18 · 7 / 14 = 9 см
Pklmn = 2(a + b) = 2(14 +9) = 46 см
3. Найдите площадь равнобедренного треугольника, боковая сторона которого равна 15 см, а основание - 24 см.
Проведем ВН - высоту треугольника АВС. Так как треугольник равнобедренный, ВН является медианой.
АН = НС = 24/2 = 12 см
ΔАВН: ∠АНВ = 90°, по теореме Пифагора
ВН = √(АВ² - АН²) = √(225 - 144) = √81 = 9 см
Sabc = AC · BH / 2 = 24 · 9 / 2 = 108 см²
4. Меньшая диагональ ромба равна 12 см, а один из углов - 60°. Найдите вторую диагональ и сторону ромба.
ΔABD равнобедренный (AB = AD как стороны ромба) и ∠BAD = 60°, значит ΔABD равносторонний. Тогда АВ = AD = BD = 12 см.
По свойству параллелограмма сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма:
AC² + BD² = 4·AB²
AC² = 4·12² - 12² = 3·12²
AC = 12√3 см
5. Большее основание и большая боковая сторона прямоугольной трапеции равны а см, а один из углов - 60°. Найдите площадь трапеции.
AD = DC = a см, ∠ADC = 60°, значит ΔADC равносторонний.
Проведем высоту трапеции СН. Она является высотой и медианой равностороннего треугольника ADC, тогда СН = а√3/2 см, АН = НD = а/2.
СН ║ АВ (как перпендикуляры к одной прямой) и СН = АВ (как высоты трапеции), тогда АВСН - прямоугольник, значит, ВС = АН = а/2 см.
Sabcd = (AD + BC)/2 · CH = (a + a/2)/2 · a√3/2 = 3a²√3/8 см²