Диагонали ромба делятся пополам в точке пересечения. Значит, диагонали разбивают ромб на 4 равных треугольника (треугольники равны по трём сторонам). Легко видеть, что треугольники являются прямоугольными с катетами 6/2=3 и 8/2=4. Площадь ромба равна площади одного такого треугольника, умноженной на 4 и равна (3*4/2)*4=6*4=24. Периметр ромба равен длине его стороны, умноженной на 4 (число сторон). Каждая сторона нашего ромба - это гипотенуза прямоугольного треугольника с катетами 3 и 4. По теореме Пифагора получаем, что она равна . Значит, периметр ромба равен 5*4=20.
Сумма углов любого треугольника равна 180° 1) 180° - (48° + 48°) = 84° В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90° В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95° В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный. ответ: А - 2; Б - 1; В - 3
Периметр ромба равен длине его стороны, умноженной на 4 (число сторон). Каждая сторона нашего ромба - это гипотенуза прямоугольного треугольника с катетами 3 и 4. По теореме Пифагора получаем, что она равна . Значит, периметр ромба равен 5*4=20.
1) 180° - (48° + 48°) = 84°
В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90°
В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95°
В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный.
ответ: А - 2; Б - 1; В - 3