в треугольнике ABC M-середина стороны AB и H - середина стороны BC. Периметр треугольника MBH - 20 см, МН - 8 см. Найти периметр четырехугольника AMHC
Построим треугольник ABC АВ примем за 12 см, АС как 10 см.(второй АВ=10, АС=12) проведем высоту ВМ из точки В. Мы получили прямоугольный треугольник АВМ, с прямым углом М и гипотенузой АВ. угол А равен 45 градусов, значит по свойству прямоугольно треугольника угол АВМ равен 45 градусов, следовательно треугольник АВМ равнобедренный, значит АМ=ВМ=х. Дальше по теореме Пифагора(с*=а*+b*, *-квадрат числа) имеем: 12*= х*+х* 144= 2х* х*=72 х= корень из 72 Площадь треугольника равна половине основания на высоту. Высота корень из 72, основание 10 => площадь треугольника равна корень из 72 умножить на 10 и разделить на 2. ответ: 30 корней из 10. второй анологично: АВ=10 - гипотенуза, тогда по теореме Пифагора 10*=х*+х* 100=2х* х*=50 х=корень из 50. Тогда площадь треугольника равна корень из 50 умножить на 10 и разделить на 2. ответ: 25 корней из 2
проведем высоту ВМ из точки В. Мы получили прямоугольный треугольник АВМ, с прямым углом М и гипотенузой АВ. угол А равен 45 градусов, значит по свойству прямоугольно треугольника угол АВМ равен 45 градусов, следовательно треугольник АВМ равнобедренный, значит АМ=ВМ=х. Дальше по теореме Пифагора(с*=а*+b*, *-квадрат числа) имеем: 12*= х*+х* 144= 2х* х*=72
х= корень из 72 Площадь треугольника равна половине основания на высоту. Высота корень из 72, основание 10 => площадь треугольника равна корень из 72 умножить на 10 и разделить на 2. ответ: 30 корней из 10.
второй анологично: АВ=10 - гипотенуза, тогда по теореме Пифагора 10*=х*+х* 100=2х* х*=50 х=корень из 50. Тогда площадь треугольника равна корень из 50 умножить на 10 и разделить на 2. ответ: 25 корней из 2
ВО=√3*а/2, где а=2*R. То есть ВО=R√3.
ВМ найдем как высоту равнобедренного треугольника KBL: ВМ=ВК*Cos(α/2), так как ВМ - высота, биссектриса и медиана треугольника КВL.
Итак, ВМ=2*R*Cos(α/2), ВО=R√3, отсюда косинус искомого угла равен
Cosβ = R√3/(2*R*Cos(α/2)) = √3/2Cos(α/2).
ответ: искомый угол равен arccos(√3/2Cos(α/2)).