В треугольнике ABC на сторонах AB и BC отмечены Точки M и N соответственно так, что MN параллельна AB. Из угла CMN провели биссектрису M K. Найдите угол MKN если угол А равен 70 градусам, угол B 60 градусам
Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.
Тогда площадь треугольника АОВ равна S/3,
а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.
Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288
Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.
Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.
1)Пирамида ABCD (D - верхняя вершина, из которой опущена высота в точку О).
Точка О является центром вписанной и описанной окружностей.
Плоский угол DNO - линейный угол двугранного угла (N - середина стороны AC).
Радиус вписанной окружности треугольника оN = DO = 6.
Радиус описанной окружности треугольника OA = оN / sin 30 = 2 * оN = 12.
Апофема пирамиды DN = sqrt (DO^2 + ON^2) = DO * sqrt 2 = 6 * sqrt 2.
Площадь боковой поверхности пирамиды = (AB + BC + AC) / 2 * DN = 3 * AC / 2 * DN = 3 * AN * DN = 3 * (оN * sqrt 3) * DN = 3 * 6 * sqrt 3 * 6 * sqrt 2 = 108 * sqrt 6.
Объём пирамиды = 1/3 * (BN * AC / 2) * DO = 1/3 * ((OB + ON) * AN) * DO = 1/3 * ((3*6) * (6 * sqrt 3)) * 6 = 216 * sqrt 3.
Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.
Тогда площадь треугольника АОВ равна S/3,
а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.
Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288
Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.
Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.