V - объём основной пирамиды, v - объём отсечённой пирамиды. Нарисуй треугольник АВЕ с основанием АВ. ЕО - высота пирамиды, ЕО1 - высота отсечённой пирамиды. ЕО1/ЕО=1/3. Через точку О1 параллельно основанию построим отрезок А1В1. Треугольники ЕАВ и ЕА1В1 подобны т.к. в них углы равны. А1В1/АВ=1/3 АВ - один из линейных размеров в основании пирамиды V. А1В1 - соответствующий элемент пирамиды v. Объём вычисляется из трёх линейных размеров: длина, ширина, высота. Если отношение линейных размеров двух пирамид равно 1:3, то отношение их объёмов имеет вид v:V=1:3³=1/27, отсюда v=V/27=81/27=3
Нарисуй треугольник АВЕ с основанием АВ. ЕО - высота пирамиды, ЕО1 - высота отсечённой пирамиды. ЕО1/ЕО=1/3.
Через точку О1 параллельно основанию построим отрезок А1В1. Треугольники ЕАВ и ЕА1В1 подобны т.к. в них углы равны. А1В1/АВ=1/3
АВ - один из линейных размеров в основании пирамиды V.
А1В1 - соответствующий элемент пирамиды v.
Объём вычисляется из трёх линейных размеров: длина, ширина, высота. Если отношение линейных размеров двух пирамид равно 1:3, то отношение их объёмов имеет вид v:V=1:3³=1/27, отсюда
v=V/27=81/27=3
знайдемо середини диагоналей читырехугольника
середина диагоналей aс: x=(-3+(-1))/2=-2; y=(-2+6)/2=2
середина диагоналей bd: x=(2+(-6))/2=-2; y=(1+3)/2=2
середины диагоналей данного читерехугольника сокращаються, значить паралелограмом
по формуле знаем что довжиния сторн читерехугольника abcd
ab=корень(())^2+())^2)=корень(25+9)=корень(34)
bc=-2)^2+(6-1)^2)=корень(9+25)=корень(34)
cd=))^2+(3-6)^2)=корень(25+9)=корень(34)
ad=))^2+())^2)=корень(9+25)=корень(34)
сторони даного паралелограма равен, тому ромбом.
по формулі відстані знайдемо довжини діагоналей чотирикутника abcd
ac=корі))^2+())^2)=корінь(4+64)=корінь(68)
bd=корі-2)^2+(3-1)^2)=корінь(64+4)=корінь(68)
даний чотирикутник(паралелограм) є ромбом і прямокутником, тому він квадрат