В треугольнике ABC продолжите стороны AB и AC от точки в противоположные этим сторонам направления на расстояния, равное длинам этих отрезков соответственно. Конечные точки полученных отрезков обозначьте соответственно точками D и Е. Можно ли сказать, что треугольники ABC и AED конгруэтны? Обоснуйте свой ответ. полный ответ
Біріншісін пайдаланып сөйлемдер құрап жаз
шартты және егер ол болмаса.
Егер сіз ерте келсеңіз (сіз / келсеңіз),
маған орын үнемдейсің бе (сен / құтқарасың)?
1
(веб-сайт / ашық емес)
(сізде бар)
пароль
2 Өтінемін
(сен маған қоңырау шал)
(сіз / таба аласыз) менің әмияным?
3
(менің ата-анам / бермейді)
маған кез-келген қалта ақшасы
(1 / өту) менің емтихандарым.
4
(жаңбыр / жаңбыр),
(біз ойнамаймыз) саябақта футбол.
5
(сіз / тәжірибе) көбірек,
(сіз / алмайсыз) ішіне
команда.
Анель 6
(1 / қоңырау шалмаған) сіз
(біз / жетеміз) үйге
кеш. Мен сені оятуды қаламаймын.
7
(көбірек адам / дауыс)
(ол / жоғалтады)
бұл жолы,
сайлау
8
Челси
char
(не / не)
(олар ұпай жинамайды)
Иә, жеткілікті мақсаттар
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²