В треугольнике ABC проведена биссектриса AD и высота CH причём точка H лежит на отрезке AB. Угол DAC в 3 раза меньше угла ABC, а угол BCH и внешний угол при вершине C относятся как 6 к 5 соответственно. Найдите углы треугольника ABC
Объяснение:4)Т.к центральный угол О =100°=> и дуга, на которую он смотрит тоже равна 100°,тогда х=50,потому что он вписаный(вписаный угол равен половине дуги ,на которую он опирается)
5)угол равен 70,тогда дуга равна 140(описанный угол,дуга в 2р больше него)
Вся окружность =360
360-140=220(это дуга,на которую смотрит х),тогда сам х=220:2=110(угол вписанный)
6)О=64,дуга тоже 64(центральный),х описанный =64/2=32
7)Т.к ВО(это радиус)=АД,то АД=ДО т.к ДО тоже радиус,тогда ВО в 2р меньше ВО,угол В=90 т.к радиус ,проведенный в точку касания явл. перпендикуляром на эту касательную.Тогда мы можем применить свойство треугольника :сторона,лежащая напротив угла в 30°=половине гипотенузы ,тогда угол ВАО=30,а ВАО=ОВС т.к это касательные вышли из 1ой точки,тогда угол ВАС=60
Искомым расстоянием от точки пересечения медиан М, до плоскости π является отрезок МД₁.
Обозначим высоты от стороны АС к плоскости π: В₁К, АЕ, СЕ₁. Соединим точки Е и Е₁. Получим трапецию ЕАСЕ₁. В₁К || АЕ || СЕ, так как они перпендикулярны плоскости π. По теореме Фалеса если параллельные прямые, пересекая стороны угла отсекают равные отрезки на одной его стороне, то они отсекают равные отрезки и на второй стороне угла, поэтому если АВ₁=В₁С, то ЕК=КЕ₁. → В₁К – средняя линия трапеции ЕАСЕ₁.
В₁К=(ЕА+Е₁С)÷2=(2+5)÷2=7÷2=3,5
Проведём перпендикуляры В₁Н и КК₁ к стороне ВК₁, получили трапецию В₁КК₁В.
В₁Н делит ВК₁, что К₁Н=В₁К=3,5, тогда ВН=11–3,5=7,5.
Рассмотрим ∆ВВ₁Н, он прямоугольный, ВН и В₁Н – катеты, ВВ₁ – гипотенуза. Медианы треугольника, пересекаясь, точкой пересечения делятся на отрезки в отношении 2 : 1, начиная от вершины треугольника, поэтому ВМ : МВ₁=2 : 1 и по теореме Фалеса ДН : В₁Д=2 : 1. МД || ВН, и МД отсекает от ∆ВВ₁Н подобный ему ∆МВ₁Д. Стороны ∆ВВ₁Н имеют 3 части (2+1=3), а стороны ∆МВ₁Д – одну часть. Пусть МД=х, запишем пропорцию:
МД : ВН=1 : 3
Произведение крайних членов пропорции равно произведению средних:
ответ:4)а 5)в 6)б 7)в
Объяснение:4)Т.к центральный угол О =100°=> и дуга, на которую он смотрит тоже равна 100°,тогда х=50,потому что он вписаный(вписаный угол равен половине дуги ,на которую он опирается)
5)угол равен 70,тогда дуга равна 140(описанный угол,дуга в 2р больше него)
Вся окружность =360
360-140=220(это дуга,на которую смотрит х),тогда сам х=220:2=110(угол вписанный)
6)О=64,дуга тоже 64(центральный),х описанный =64/2=32
7)Т.к ВО(это радиус)=АД,то АД=ДО т.к ДО тоже радиус,тогда ВО в 2р меньше ВО,угол В=90 т.к радиус ,проведенный в точку касания явл. перпендикуляром на эту касательную.Тогда мы можем применить свойство треугольника :сторона,лежащая напротив угла в 30°=половине гипотенузы ,тогда угол ВАО=30,а ВАО=ОВС т.к это касательные вышли из 1ой точки,тогда угол ВАС=60
МД₁=6
Объяснение:
Искомым расстоянием от точки пересечения медиан М, до плоскости π является отрезок МД₁.
Обозначим высоты от стороны АС к плоскости π: В₁К, АЕ, СЕ₁. Соединим точки Е и Е₁. Получим трапецию ЕАСЕ₁. В₁К || АЕ || СЕ, так как они перпендикулярны плоскости π. По теореме Фалеса если параллельные прямые, пересекая стороны угла отсекают равные отрезки на одной его стороне, то они отсекают равные отрезки и на второй стороне угла, поэтому если АВ₁=В₁С, то ЕК=КЕ₁. → В₁К – средняя линия трапеции ЕАСЕ₁.
В₁К=(ЕА+Е₁С)÷2=(2+5)÷2=7÷2=3,5
Проведём перпендикуляры В₁Н и КК₁ к стороне ВК₁, получили трапецию В₁КК₁В.
В₁Н делит ВК₁, что К₁Н=В₁К=3,5, тогда ВН=11–3,5=7,5.
Рассмотрим ∆ВВ₁Н, он прямоугольный, ВН и В₁Н – катеты, ВВ₁ – гипотенуза. Медианы треугольника, пересекаясь, точкой пересечения делятся на отрезки в отношении 2 : 1, начиная от вершины треугольника, поэтому ВМ : МВ₁=2 : 1 и по теореме Фалеса ДН : В₁Д=2 : 1. МД || ВН, и МД отсекает от ∆ВВ₁Н подобный ему ∆МВ₁Д. Стороны ∆ВВ₁Н имеют 3 части (2+1=3), а стороны ∆МВ₁Д – одну часть. Пусть МД=х, запишем пропорцию:
МД : ВН=1 : 3
Произведение крайних членов пропорции равно произведению средних:
МД•3=ВН•1
3х=7,5•1
3х=7,5
х=7,5÷3
х=2,5
ДД₁=В₁К=НК₁=3,5
МД₁=МД+ДД₁=2,5+3,5=6