В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ЗаНоЗа169
ЗаНоЗа169
22.02.2022 07:58 •  Геометрия

В треугольнике ABC проведённые медианы AN и BK пересекаются в точке M. Определи площадь треугольника ABC, если площадь треугольника BNM равна 15 см2.

Показать ответ
Ответ:
87348732
87348732
13.10.2020 04:03

Медиана АN делит треугольник АВС на два равновеликих треугольника, то есть площадь треугольника АВN равна половине площади АВС. Действительно Основания треугольников АВN и АСN равны (ВN = СN), высота общая.

Опустим перпендикуляр АР на сторону ВС и перпендикуляр МR на сторону ВС.

Треугольники АРN и МRN подобны. АN:MN = AP:NR.

Точка персечения медиан М делит медианы на отрезки с сотношением длинн 2:1, считая от вершины,

то есть АМ: MN. Отсюда АN:MN = 3:1, значит AP:NR = 3:1. AP и NR - высоты треугольников АВN и МВN с общим основанием ВN,

поэтому площадь МВN = (1/3)*(площадь АВN) = (1/3)*(1/2)*(площадь АВС) = (1/6)*(площадь АВС).

Отсюда площадь АВС = 6*(площадь МВN) = 6*15 = 90.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота