Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
Подробно. • На произвольной прямой отмечаем точки М и Н. • Из этих точек, как из центров, проводим две полуокружности так, чтобы они пересеклись по обе стороны от прямой. Точки пересечения полуокружностей соединяем. •Точку пересечения с прямой обозначим О - это будет вершина нужного угла. Построен срединный перпендикуляр. Отметим на нем отрезок ОК, на прямой - равный ему ОВ и соединим их. Треугольник КОВ - равнобедренный прямоугольный. • Разделим отрезок КВ пополам таким же образом, как при построении срединного перпендикуляра отрезка НМ, и соединим точку пересечения перпендикуляра и т. О. ОС - высота равнобедренного ∆ КОВ, следовательно, и биссектриса прямого угла КОВ, и угол СОВ=90°:2=45°. • Из т.О, как из центра, построим окружность. • Поставим ножку циркуля в точку пересечения ОС и окружности и тем же радиусом сделаем на окружности насечку и отметим т.А. • АС=R, OA=OC=R, след. ∆ АОС = равносторонний и угол АОС=60°. Угол АОВ=60°+45°=105°. Угол нужной величины построен.
1) основание - квадрат
2) проекция стороны на основание -прямоугольный треугольник
3) в разрезе пирамиды по углам и вершине тоже треугольник
решение:
треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60°
проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов )
это и будет ответом - (4/ tg60°) / sin 45°
• На произвольной прямой отмечаем точки М и Н.
• Из этих точек, как из центров, проводим две полуокружности так, чтобы они пересеклись по обе стороны от прямой. Точки пересечения полуокружностей соединяем.
•Точку пересечения с прямой обозначим О - это будет вершина нужного угла. Построен срединный перпендикуляр. Отметим на нем отрезок ОК, на прямой - равный ему ОВ и соединим их. Треугольник КОВ - равнобедренный прямоугольный.
• Разделим отрезок КВ пополам таким же образом, как при построении срединного перпендикуляра отрезка НМ, и соединим точку пересечения перпендикуляра и т. О. ОС - высота равнобедренного ∆ КОВ, следовательно, и биссектриса прямого угла КОВ, и угол СОВ=90°:2=45°.
• Из т.О, как из центра, построим окружность. • Поставим ножку циркуля в точку пересечения ОС и окружности и тем же радиусом сделаем на окружности насечку и отметим т.А.
• АС=R, OA=OC=R, след. ∆ АОС = равносторонний и угол АОС=60°. Угол АОВ=60°+45°=105°. Угол нужной величины построен.