Проведем из вершины отрезки , где точка пересечение с окружностью. Обозначим точку перпендикуляра с . Получим четырехугольник , который вписан в окружность. По теореме Птолемея , так как лежит на центре , то треугольники прямоугольные. . Откуда при подстановке получаем соотношение . Так как Четырехугольник прямоугольник. Заметим что - высота прямоугольного треугольника , тогда . Откуда по Теореме Пифагора , так как является высотой прямоугольного треугольника , то
Опустите перпендикуляры из центра окружности на данные хорды.
Пусть AB и A1B1 – равные хорды окружности с центром O, не являющиеся диаметрами. Расстояния от центра окружности до этих хорд равны перпендикулярам OM и OM1, опущенным на хорды из центра окружности. Поскольку M и M1 – середины хорд, то AM = ½ AB = ½ A1B1 = A1M1.
Значит, прямоугольные треугольники AMO и A1M1O равны по катету и гипотенузе (радиус окружности). Следовательно, OM = OM1.
Если AB и A1B1 – диаметры, то утверждение очевидно.
Получим четырехугольник , который вписан в окружность.
По теореме Птолемея , так как лежит на центре , то треугольники прямоугольные.
.
Откуда при подстановке получаем соотношение
.
Так как
Четырехугольник прямоугольник.
Заметим что - высота прямоугольного треугольника
, тогда
.
Откуда по Теореме Пифагора
, так как является высотой прямоугольного треугольника , то
тогда
Объяснение:
А)Подсказка :
Опустите перпендикуляры из центра окружности на данные хорды.
Пусть AB и A1B1 – равные хорды окружности с центром O, не являющиеся диаметрами. Расстояния от центра окружности до этих хорд равны перпендикулярам OM и OM1, опущенным на хорды из центра окружности. Поскольку M и M1 – середины хорд, то AM = ½ AB = ½ A1B1 = A1M1.
Значит, прямоугольные треугольники AMO и A1M1O равны по катету и гипотенузе (радиус окружности). Следовательно, OM = OM1.
Если AB и A1B1 – диаметры, то утверждение очевидно.
Б) Да верно
P.S.: надеюсь на лучший ответ:)