Точка пересечения медианы со стороной треугольника - основание медианы.Отрезок, который проведен через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек и ее длина равна половине длины основания.
МК=АВ:2=14:2=7
Т.е.фигура АВМК будет иметь две параллельные прямые АВ||KM
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
Точка пересечения медианы со стороной треугольника - основание медианы.Отрезок, который проведен через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек и ее длина равна половине длины основания.
МК=АВ:2=14:2=7
Т.е.фигура АВМК будет иметь две параллельные прямые АВ||KM
и будет являться трапецией.
Медианы делят стороны пополам. Следовательно
ВМ=ВС:2=6
АК=АС:2=9
Р=АВ (14)+ВМ (6)+АК (9)+МК(7)=36