В треугольнике ABC угол BAC = arcsin (2*sqrt(2))/3, сторона AB = 6sqrt(3), AC = 3sqrt(3). На высоте BH, опущенной на сторону AC, взята точка M, такая, что BM:MH = 3:1. Через точку M проведен отрезок CK, соединяющий угол ACB и сторону AB. Найдите длину отрезка CK, если BH = 4sqrt(6)
Смотри разбор
Объяснение:
1) Пусть в параллелограмме ABCD, ∠A = 65°.
∠C = ∠A = 65° ⇒ ∠C = 65°.
Параллелограмм это выпуклый четырёхугольник, поэтому сумма его углов равна 360°.
∠A + ∠B + ∠C + ∠D = 360°; 2·65° + 2·∠B = 360° |:2 ; ∠B = 180° - 65° = 115°.
∠D = ∠B = 115° ⇒ ∠D = 115°.
ответ: 65°, 115° и 115°.
2 ) Противоположные стороны параллелограмма равны по его определению, значит вторая меньшая сторона тоже равна 11 см. Значит большая сторона будет равна (54-22):2=16 см.
3) Сумма углов трапеции равна 360 градусов. В трапеции два угла прямоугольные (равны 90 градусов), а один равен 20 градусов - по условию. Отсюда неизвестный угол равен 360-90-90-20 = 160 градусов
ответ: 90°, 90° и 160°
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).