У прямоугольной трапеции 2 прямых угла, 1 тупой и 1 острый. Высота из тупого угла разбивает трапецию на прямоугольник и прямоугольный треугольник. Одна из сторон прямоугольника равна длине меньшего основания и равна 5. Один из катетов прямоугольного треугольника равен 22-5=17, а так как острый угол этого треугольника - 45 градусов, второй катет также равен 17. Второй катет является высотой и второй стороной прямоугольника. Таким образом, площадь прямоугольника равна 5*17=85, а площадь треугольника 17*17/2=289/2=144.5. Значит, суммарная площадь равна 144.5+85=229.5
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°