В треугольнике ABC угол В равен 20°, угол С равен 10°. Вне треугольника выбрана точка М так, что треугольник СМ В равносторонний. (Точки М и А лежат по разные стороны от прямой ВС.) Докажите что точка М совпадает с центром описанной окружности
1.Если эти окружности касаются внешним образом. то расстояние между центрами равно сумме радиусов этих окружностей. Пусть коэффициент пропорциональноти равен х>0, тогда 3х+5х=16, откуда х=2, тогда радиус меньшей окружности равен 3*2=6/см/, а радиус большей 5*2=10/см/.
2. Если же окружности касаются внешним образом, то расстояние между их центрами равно разности между радиусом большей и меньшей окружностей соответственно. т.е. 5х-3х=16, откуда х=8, тогда радиус меньшей окружности равна 3*8=24/см/,а радиус большей окружности 5*8=40 /см/
Пусть дана правильная треугольная призма АВСА1В1С1. Сечение, проходящее через ребро A1B1 и точку M - середину AC - равнобедренная трапеция А1В1NM, где точка N - пересечение стороны ВС основания с прямой МN - параллельной А1В1 (а значит и параллельной стороне АВ), так как параллельные грани АВС и А1В1С1 пересекаются плоскостью сечения по параллельным прямым.
В треугольнике АВС MN - средняя линия и равна половине стороны АВ, то есть MN= 3 см.
Боковые стороны трапеции найдем из прямоугольного треугольника АА1М с катетами, равными 4 см и 3 см (точка М - середина стороны АС).
1.Если эти окружности касаются внешним образом. то расстояние между центрами равно сумме радиусов этих окружностей. Пусть коэффициент пропорциональноти равен х>0, тогда 3х+5х=16, откуда х=2, тогда радиус меньшей окружности равен 3*2=6/см/, а радиус большей 5*2=10/см/.
2. Если же окружности касаются внешним образом, то расстояние между их центрами равно разности между радиусом большей и меньшей окружностей соответственно. т.е. 5х-3х=16, откуда х=8, тогда радиус меньшей окружности равна 3*8=24/см/,а радиус большей окружности 5*8=40 /см/
ответ. задача имеет два решения. R=10cм ; r=6см
R=40см; r=24см
Периметр сечения равен 19 см.
Объяснение:
Пусть дана правильная треугольная призма АВСА1В1С1. Сечение, проходящее через ребро A1B1 и точку M - середину AC - равнобедренная трапеция А1В1NM, где точка N - пересечение стороны ВС основания с прямой МN - параллельной А1В1 (а значит и параллельной стороне АВ), так как параллельные грани АВС и А1В1С1 пересекаются плоскостью сечения по параллельным прямым.
В треугольнике АВС MN - средняя линия и равна половине стороны АВ, то есть MN= 3 см.
Боковые стороны трапеции найдем из прямоугольного треугольника АА1М с катетами, равными 4 см и 3 см (точка М - середина стороны АС).
Это Пифагоров треугольник. А1М = 5 см.
Периметр сечения равен 6+2·5+3 = 19 см.