Медианы ЕN и FM треугольника EFK, длины которых 12 и 18, пересекаются под прямым углом. Найдите площадь Треугольника EFK.
Объяснение:
1) Рассмотрим выпуклый четырёхугольник EFNM у которого диагонали , по условию, взаимно- перпендикулярны .
Его площадь можно найти по формуле S = 1/2*d₁*d₂* sin (∠d₁d₂).
S(EFNM) = 1/2*12*18* sin 90°=108 ( ед²).
2) S(EFK)=S(EFNM)+S(MNK)
3) MN-средняя линия , тк M,N-середины сторон по определению медианы . По т. о средней линии треугольника MN║EF .
ΔEFK ∼ΔMNK по 2-м углам : ∠К -общий ,∠FEK=∠NMK как соответственные при MN║EF ,секущей ЕК ⇒ сходственные стороны
пропорциональны , k= . По т об отношении площадей
подобных треугольников или ,
4*S( MNK)=S(MNK)+S(EFNM) ,
3(MNK)=108 , S(MNK)=36 ед².
4) S(EFK)=S(EFNM)+S(MNK) =108+36=144 ( ед²).
72 см²
1. Прямоугольный Δ АСК. ∠ К = 60° ⇒ ∠А = 180 - 90 - 60 = 30° ⇒ СК = 1/2АК = 4√3, как катет, лежащий напротив угла в 30°.
2. Прямоугольный Δ СРК. ∠К = 60° ⇒ ∠ С = 180 - 90 - 60 = 30°
⇒ РК = 1/2 СК = 2√3, как катет, лежащий напротив угла в 30°.
По теореме Пифагора СР = √(СК² - РК²) = √36 = 6
3. Δ АВМ = Δ СРК по гипотенузе и острому углу ⇒ АМ = РК = 2√3 ⇒ МЗ = 8√3 - 2√3 - 2√3 = 4√3.
4. В 4-х угольнике ВСРМ противоположные стороны попарно параллельны, углы = 90° ⇒ является прямоугольником. ⇒ ВС = МР = 4√3
5. S трапеции АВСК = СР * (ВС + АК)/2 = 6 * (4√3 + 8√3) = 72√3 см²
Медианы ЕN и FM треугольника EFK, длины которых 12 и 18, пересекаются под прямым углом. Найдите площадь Треугольника EFK.
Объяснение:
1) Рассмотрим выпуклый четырёхугольник EFNM у которого диагонали , по условию, взаимно- перпендикулярны .
Его площадь можно найти по формуле S = 1/2*d₁*d₂* sin (∠d₁d₂).
S(EFNM) = 1/2*12*18* sin 90°=108 ( ед²).
2) S(EFK)=S(EFNM)+S(MNK)
3) MN-средняя линия , тк M,N-середины сторон по определению медианы . По т. о средней линии треугольника MN║EF .
ΔEFK ∼ΔMNK по 2-м углам : ∠К -общий ,∠FEK=∠NMK как соответственные при MN║EF ,секущей ЕК ⇒ сходственные стороны
пропорциональны , k= . По т об отношении площадей
подобных треугольников или ,
4*S( MNK)=S(MNK)+S(EFNM) ,
3(MNK)=108 , S(MNK)=36 ед².
4) S(EFK)=S(EFNM)+S(MNK) =108+36=144 ( ед²).
72 см²
Объяснение:
1. Прямоугольный Δ АСК. ∠ К = 60° ⇒ ∠А = 180 - 90 - 60 = 30° ⇒ СК = 1/2АК = 4√3, как катет, лежащий напротив угла в 30°.
2. Прямоугольный Δ СРК. ∠К = 60° ⇒ ∠ С = 180 - 90 - 60 = 30°
⇒ РК = 1/2 СК = 2√3, как катет, лежащий напротив угла в 30°.
По теореме Пифагора СР = √(СК² - РК²) = √36 = 6
3. Δ АВМ = Δ СРК по гипотенузе и острому углу ⇒ АМ = РК = 2√3 ⇒ МЗ = 8√3 - 2√3 - 2√3 = 4√3.
4. В 4-х угольнике ВСРМ противоположные стороны попарно параллельны, углы = 90° ⇒ является прямоугольником. ⇒ ВС = МР = 4√3
5. S трапеции АВСК = СР * (ВС + АК)/2 = 6 * (4√3 + 8√3) = 72√3 см²