По теореме синусов: BC : sinA = AB : sin C AB = BC · sinC / sinA = BC · sin72° / sin64° ≈ 4,125 · 0,9511 / 0,8988 ≈ 4,4 м S = 1/2 · AB · BC · sinB ≈ 1/2 · 4,4 · 4,125 · sin44° ≈ 9,075 · 0,6947 ≈ 6,3 м²
2. Используя теорему синусов решите треугольник АВС, если АВ = 8 см, ∠А = 30°, ∠В = 45°. ∠С = 180° - ∠A - ∠B = 180° - 30° - 45° = 105° AB : sinC = AC : sinB AC = AB · sinB / sin C = 8 · sin45° / sin105° ≈ 8 · 0,7071 / 0,9659 ≈ 5,9 см
AB : sinC = BC : sinA BC = AB · sinA / sinC = 8 · sin30° / sin105° ≈ 8 · 0,5 / 0,9659 ≈ 4,1 см
3. Используя теорему косинусов решите треугольник АВС, если АВ = 5 см, АС = 7,5 см, ∠С = 135°. В условии очевидно ошибка, так как напротив большего угла (∠С) должна лежать большая сторона (АВ), а АВ не большая. По аналогии с вариантом 1, изменим условие: ∠А = 135°
Сечение цилиндра, параллельное его оси, - прямоугольник, одна сторона которого равна высоте цилиндра, а другая - AD - хорда основания.
Проведем ОН ⊥ AD. Сечение параллельно оси, значит отрезок АВ перпендикулярен плоскости основания. Значит АВ⊥ОН. Тогда ОН⊥(АВС), т.е. ОН = 6 см - расстояние от оси до плоскости сечения.
ΔАОН: ∠АНО = 90°, по теореме Пифагора
АН = √(АО² - ОН²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
ΔAOD равнобедренный (ОА = OD как радиусы), значит ОН - высота и медиана.
AD = 2 · AH = 2 · 8 = 16 см
Sabcd = AD · AB = 16 · 16 = 256 см²
2)
Если сечение перпендикулярно основанию, то оно параллельно оси цилиндра и имеет форму прямоугольника, одна сторона которого равна высоте, а другая - AD - хорда, отсекающая от окружности основания дугу в 60°.
∠AOD = 60°, так как центральный угол равен дуге, на которую опирается.
ΔAOD равнобедренный (AO = OD как радиусы) с углом 60°, значит он равносторонний.
1. Найдите площадь треугольника АВС, если
СВ = 4100 м, ∠А = 32°, ∠С = 120°.
∠B = 180° - ∠A - ∠C = 180° - 32° - 120° = 28°
По теореме синусов:
BC : sinA = AB : sinC
AB = BC · sin120° / sin32° ≈ 4100 · 0,866 / 0,5299 ≈ 6700 м
S = 1/2 · AB · BC · sinB ≈ 1/2 · 6700 · 4100 · 0,4695 ≈ 6448582,5 м²
2. Используя теорему синусов решите треугольник АВС, если
АВ = 5 см, ∠В = 45°, ∠С = 60°.
∠С = 180° - ∠А - ∠В = 180° - 45° - 60° = 75°
По теореме синусов:
АВ : sinC = BC : sinA
BC = AB·sinA/sinC = 5 · sin45° / sin75° ≈ 5 · 0,7071 / 0,9659 ≈ 3,7 см
АВ : sinC =АС : sinB
AC = AB · sinB / sinC = 5 · sin60° / sin75° ≈ 5 · 0,866 / 0,9659 ≈ 4,5 см
3. Используя теорему косинусов решите треугольник АВС, если
АС = 0,6 м, СВ = √3/4 дм, ∠С = 150°.
АС = 0,6 м = 6 дм
По теореме косинусов:
АВ = √(АС² + BC² - 2·AC·BC·cos150°) = √(36 + 3/16 + 2·6·√3/4 · √3/2) =
= √(36,1875 + 4,5) = √40,6875 ≈ 6,4 дм
По теореме синусов:
АС : sin B = AB : sin C
sinB = AC · sinC / AB ≈ 6 · 0,5 / 6,4 ≈ 0,4688
∠B ≈ 28°
∠A = 180 - ∠C - ∠B ≈ 180° - 150° - 28° ≈ 2°
2 вариант.
1. Найдите площадь треугольника АВС, если
ВС = 4,125 м, ∠В = 44°, ∠С = 72°.
∠A = 180° - ∠B - ∠C = 180° - 44° - 72° = 64°
По теореме синусов:
BC : sinA = AB : sin C
AB = BC · sinC / sinA = BC · sin72° / sin64° ≈ 4,125 · 0,9511 / 0,8988 ≈ 4,4 м
S = 1/2 · AB · BC · sinB ≈ 1/2 · 4,4 · 4,125 · sin44° ≈ 9,075 · 0,6947 ≈ 6,3 м²
2. Используя теорему синусов решите треугольник АВС, если
АВ = 8 см, ∠А = 30°, ∠В = 45°.
∠С = 180° - ∠A - ∠B = 180° - 30° - 45° = 105°
AB : sinC = AC : sinB
AC = AB · sinB / sin C = 8 · sin45° / sin105° ≈ 8 · 0,7071 / 0,9659 ≈ 5,9 см
AB : sinC = BC : sinA
BC = AB · sinA / sinC = 8 · sin30° / sin105° ≈ 8 · 0,5 / 0,9659 ≈ 4,1 см
3. Используя теорему косинусов решите треугольник АВС, если
АВ = 5 см, АС = 7,5 см, ∠С = 135°.
В условии очевидно ошибка, так как напротив большего угла (∠С) должна лежать большая сторона (АВ), а АВ не большая.
По аналогии с вариантом 1, изменим условие: ∠А = 135°
По теореме косинусов:
BC = √(AB² + AC² - 2·AB·AC·cosA) ≈ √(25 + 56,25 + 2 ·5 · 7,5 · 0,7071) ≈
≈ √(81,25 + 53,0325) ≈ √134,2825 ≈ 11,6 см
По теореме синусов:
BC : sin A = AB : sinC
sinC = AB · sinA / BC ≈ 5 · sin 135° / 11,6 ≈ 5 · 0,7071 / 11,6 ≈ 0,3048
∠C ≈ 18°
∠B = 180° - ∠A - ∠C ≈ 180° - 135° - 18° ≈ 27°
1) 256 см²
2) 40 дм²
Объяснение:
1)
Сечение цилиндра, параллельное его оси, - прямоугольник, одна сторона которого равна высоте цилиндра, а другая - AD - хорда основания.
Проведем ОН ⊥ AD. Сечение параллельно оси, значит отрезок АВ перпендикулярен плоскости основания. Значит АВ⊥ОН. Тогда ОН⊥(АВС), т.е. ОН = 6 см - расстояние от оси до плоскости сечения.
ΔАОН: ∠АНО = 90°, по теореме Пифагора
АН = √(АО² - ОН²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
ΔAOD равнобедренный (ОА = OD как радиусы), значит ОН - высота и медиана.
AD = 2 · AH = 2 · 8 = 16 см
Sabcd = AD · AB = 16 · 16 = 256 см²
2)
Если сечение перпендикулярно основанию, то оно параллельно оси цилиндра и имеет форму прямоугольника, одна сторона которого равна высоте, а другая - AD - хорда, отсекающая от окружности основания дугу в 60°.
∠AOD = 60°, так как центральный угол равен дуге, на которую опирается.
ΔAOD равнобедренный (AO = OD как радиусы) с углом 60°, значит он равносторонний.
AD = AO = 5 дм
АВ = 8 дм
Sabcd = AB · AD = 5 · 8 = 40 дм²