Если в прямоугольном треугольнике один из острых углов 45°, второй тоже 45°, и тогда его катеты равны. Гипотенуза равна катету, деленному на синус острого угла= =6√2 Объем призмы равен произведению площади ее основания на высоту. V=S•h Площадь прямоугольного треугольника в основании S=а•b:2 S=6•6:2=18 см² h=V:S h=108:18=6 см Площадь боковой поверхности прямой призмы равна сумме площадей ее боковых граней ( прямоугольников) или произведению высоты на периметр основания, что дает одинаковый результат. S бок=h•P=6•(6+6+6√2)=6•6(2+√2)=36•(2+√2)см²
1) Основание пирамиды - прямойг. треуг. АВС, угол В=90, АС=6см ВС=8см. По теореме Пифагора гипотенуза АС=10см. SH - высота пирамиды. Если около прямоуг. тр-ка описать окружность, то его гипотенуза является диаметром, а центр окружности лежит на середине гипотенузы, т.е. в точке Н. Следовательно, АН=ВН=СН как радиусы описанной окружности. Высота SH равна гипотенузе по условию, значит SH=10 см, АН=ВН=10/2=5см. Треуг-ки SHA=SHB=SHC по двум катетам, следовательно все боковые ребра пирамиды равны SA=SB=SC=√(100+25)=5√5cм
2) Если в прямоуг. треуг-ке один острый угол 45, то и второй 45. Треуг. равнобедренный. S(основания)=6*6/2=18см^2. Высота Н=V/S=108/18=6см. Гипотенуза треуг-ка в основании равна √(36+36)=6√2см.
Объем призмы равен произведению площади ее основания на высоту.
V=S•h
Площадь прямоугольного треугольника в основании
S=а•b:2
S=6•6:2=18 см²
h=V:S
h=108:18=6 см
Площадь боковой поверхности прямой призмы равна сумме площадей ее боковых граней ( прямоугольников) или произведению высоты на периметр основания, что дает одинаковый результат.
S бок=h•P=6•(6+6+6√2)=6•6(2+√2)=36•(2+√2)см²
1) Основание пирамиды - прямойг. треуг. АВС, угол В=90, АС=6см ВС=8см. По теореме Пифагора гипотенуза АС=10см. SH - высота пирамиды. Если около прямоуг. тр-ка описать окружность, то его гипотенуза является диаметром, а центр окружности лежит на середине гипотенузы, т.е. в точке Н. Следовательно, АН=ВН=СН как радиусы описанной окружности. Высота SH равна гипотенузе по условию, значит SH=10 см, АН=ВН=10/2=5см. Треуг-ки SHA=SHB=SHC по двум катетам, следовательно все боковые ребра пирамиды равны SA=SB=SC=√(100+25)=5√5cм
2) Если в прямоуг. треуг-ке один острый угол 45, то и второй 45. Треуг. равнобедренный. S(основания)=6*6/2=18см^2. Высота Н=V/S=108/18=6см. Гипотенуза треуг-ка в основании равна √(36+36)=6√2см.
Площадь полной поверхности призмы:
S=18*2+36*2+36√2=108+36√2(см^2)