Объяснение:
Отношение сторон данного треугольника 6:8:10=3:4:5 соответствует египетскому, т.е. прямоугольному.
а)
Биссектриса треугольника делит противоположную сторону на отрезки, соответственно пропорциональны двум другим сторонам. =>
СD:DА=ВС:ВА
СD:DА=6:10=3:5
АС=3+5=8 частей.
1 часть=8:8=1
СD=3•1=3
Из прямоугольного ∆ СВD по т.Пифагора ВD=√(ВС^2+СD^2)=√(36+9)=3√5
б)
Для биссектрисы острого угла прямоугольного треугольника есть формула
L=a•√(2c:(a+c)), где L- биссектриса, а и с -соответственно катет, прилежащий углу, и гипотенуза.
L=6•√(2•10:(6+10))=6√(5:4)=3√5
Объяснение:
Отношение сторон данного треугольника 6:8:10=3:4:5 соответствует египетскому, т.е. прямоугольному.
а)
Биссектриса треугольника делит противоположную сторону на отрезки, соответственно пропорциональны двум другим сторонам. =>
СD:DА=ВС:ВА
СD:DА=6:10=3:5
АС=3+5=8 частей.
1 часть=8:8=1
СD=3•1=3
Из прямоугольного ∆ СВD по т.Пифагора ВD=√(ВС^2+СD^2)=√(36+9)=3√5
б)
Для биссектрисы острого угла прямоугольного треугольника есть формула
L=a•√(2c:(a+c)), где L- биссектриса, а и с -соответственно катет, прилежащий углу, и гипотенуза.
L=6•√(2•10:(6+10))=6√(5:4)=3√5