Прямая призма. Sбок пов.=Росн*Н Pосн=4*с, с - сторона ромба диагонали ромба перпендикулярны и точкой пересечения делятся пополам. прямоугольный треугольник: катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы катет b =15 см (30:2) - (1/2) диагонали ромба гипотенуза с - сторона ромба по теореме Пифагора: c²=8²+15², c=17 см бОльшая диагональ призмы =50 см -наклонная. Большая наклонная имеет бОльшую проекцию, => рассмотрим прямоугольный треугольник: гипотенуза с=50 см - бОльшая диагональ призмы катет а= 30 см - бОльшая диагональ основания призмы катет H - высота призмы, найти. по теореме Пифагора: 50²=30²+H². H²=1600. H=40 см
Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: с прямым углом , EF — биссектриса , , FG — искомый отрезок. ========== Решение: Докажем, что . 1) Так как — биссектриса, то (биссектриса делит на два равные угла). 2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ). 3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
Отсюда:
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей. Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)). Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда:
ответ: 13. ========= ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.
Sбок пов.=Росн*Н
Pосн=4*с, с - сторона ромба
диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
прямоугольный треугольник:
катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы
катет b =15 см (30:2) - (1/2) диагонали ромба
гипотенуза с - сторона ромба
по теореме Пифагора: c²=8²+15², c=17 см
бОльшая диагональ призмы =50 см -наклонная.
Большая наклонная имеет бОльшую проекцию, =>
рассмотрим прямоугольный треугольник:
гипотенуза с=50 см - бОльшая диагональ призмы
катет а= 30 см - бОльшая диагональ основания призмы
катет H - высота призмы, найти.
по теореме Пифагора:
50²=30²+H². H²=1600. H=40 см
Sбок.пов=4*17*40
Sбок.пов=2720 см²
==========
Решение:
Докажем, что .
1) Так как — биссектриса, то (биссектриса делит на два равные угла).
2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ).
3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
Отсюда:
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей.
Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)).
Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда:
ответ: 13.
=========
ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.