В треугольнике АВС, изображение на рисунке, АВ=ВС, КМ и РО перпендикулярны АС, АМ = ОС.
Докажи, что АК=СР.
Вариант ответа:
1. Через равнобедренность треугольника АВС прийти к равными углам А и С; через второй признак равенства треугольника доказать равенства АКМ и СРО, таким образом и АК = СР.
2. Треугольник АВС равносторонний, через это прийти к равному углам А и В; через третий признак равенства треугольника доказать равенства АКМ и СРО таким образом и АК=СР.
Треугольник, периметр которого равен 18 см, длится биссектрисой на два треугольника, периметр которых равны 12 см и 15 см. Найдите биссектрису этого треугольника.
(И напишите условие задачи
Объяснение:
Дано : ΔАВС, АД-биссектриса, Д∈ВС. Р( АВС)=18 см, Р(АДВ)=12 см,
Р (АДС)=15 см.
Найти : длину отрезка АД.
Решение.
Р(АДВ)=АВ+ВД+ДА=12
Р (АДС)=АС+СД+ДА=15 . Получили систему :
[АВ+ВД+ДА=12
{АС+СД+ДА=15 сложим почленно и учтем, что ВД+СД=ВС.
АВ+АС+ВС+2*ДА=27 ,
Р( АВС)+2*ДА=27 ,
18+2*ДА=25 ,
2*ДА=9 ,
ДА=4,5 см .
Объяснение:
Для начала проведем высоту из угла в 135° к большей высоте
Рассмотрим получившийся треугольник.
Т.к. у нас была дага трапеция, то острый угол её равен 45°
Тогда в получившемся треугольнике будут дава угла, равных 45°. Тогда этот треугольник является равнобедренным.
Значит, высота, проведённая к большему основанию, равна одной из отсекаемых частей (проекции).
Т.к. у нас первоначально трапеция была прямоугольной, то меньшая боковая сторона равна высоте и этой проекции.
Большее основание тогда равно сумме меньшего основания и проекции:
12 + 7 = 19.
ответ: 19.