В треугольнике АВС известно, что АВ = 3 см, ВС = 4 см, АС = 6 см. На стороне ВС обозначена точка М так, что СМ = 3 см. Прямая, которая проходит через точку М перпендикулярно к биссектрисе угла АСВ, пересекает отрезок АС в точке К, а прямая, которая проходит через точку К перпендикулярно к биссектрисе угла ВАС, пересекает прямую АВ в точке D. Найдите отрезок BD.
Значит, находим второй катет по теореме Пифагора.
100-64=36.
Катет равен 6.
Всё основание равно 12.
Площадь равна половине произведения стороны на высоту, проведённую к этой стороне.
То есть S=1\2*12*8=48.
3. Значит, катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы. То есть 6:2=3.
Находим высоту по теореме Пифагора.
36-9=25.
Высота равна 5.
Большее основание равно 16, так как трапеция равнобедренная.
Площадь равна произведению полусуммы оснований на высоту 1\2(10+16)*5= 65.
Значит, вначале строим прямой угол (надеюсь, вы знаете, как это делается) . На сторонах прямого угла
откладываем равные отрезки. Затем соединяем концы этих отрезков. Получим равнобедренный прямоугольный треугольник, гипотенузой которого и будет отрезок, соединивший эти концы. Затем разделим
эту гипотенузу на восемь равных частей. Проводим лучи из вершины прямого угла через концы этих отрезков. Получим восемь углов, каждый из которых будет равен11°15'