В треугольнике АВС известно что АВ=ВС=11см середины перпендикуляр к стороне АВ пересекает сторону DC в точке К. найдите АС если периметр треугольника ВКС равен 50 см СОЧ МАЛО ВРЕМЕНИ
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
№1. Если т. М симметрична точке К относительно точки Р, значит т .Р - середина отрезка КМ. Используем формулы нахождения координат середины отрезка: х = (х₁ + х₂) :2, х₁ = 2х - х₂ = 2· 1 - 9 = 2 - 9 = -7
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Объяснение:
№1. Если т. М симметрична точке К относительно точки Р, значит т .Р - середина отрезка КМ. Используем формулы нахождения координат середины отрезка: х = (х₁ + х₂) :2, х₁ = 2х - х₂ = 2· 1 - 9 = 2 - 9 = -7
аналогично у₁ = 2у - у₂ = 2 · (-6) - (-5) = - 12 + 5 = - 7
z₁ = 2z - z₂ = 2 · 3 - 1 = 6 - 1 = 5 ответ: (-7; -7;5)
№2. т. О(0; 0; 0) - центр гомотетии, по определению гомотетии ОК = 0,5ОА. Значит т. К(-2 :2; 4: 2; -6: 2) = (-1; 2; -3), т.к. 0,5 это половина
ответ((-1; 2; -3)
№3. Для определения перпендикулярности достаточно доказать, что скалярное произведение векторов равно нулю.
→ →
а · в = а₁ в₁ + а₂в₂ + а₃в₃ = -2· 6 + 1·(-5) + 3 ·7 = -12 -5 +21 = 4.
Т.к. скалярное произведение не равно нулю, то вектора не перпендикулярны.
ответ: нет