В треугольнике АВС известно, что АВ=ВС=18 см. Серединный перпендикуляр к стороне АВ пересекает сторону ВС в точке Е. Найдите основание АС, если периметр треугольника АЕС равен 27 см
Углы прямоугольника равны 90º.⇒ Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр. Диагональ вписанного прямоугольника - диаметр описанной окружности. d=2R=10 Диагональ вписанного прямоугольника равна 10 (ед. длины) –––––––––– Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой. Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности. d=10 (ед. длины)
Углы прямоугольника равны 90º.⇒ Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр. Диагональ вписанного прямоугольника - диаметр описанной окружности. d=2R=10 Диагональ вписанного прямоугольника равна 10 (ед. длины) –––––––––– Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой. Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности. d=10 (ед. длины)
Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр.
Диагональ вписанного прямоугольника - диаметр описанной окружности.
d=2R=10
Диагональ вписанного прямоугольника равна 10 (ед. длины)
––––––––––
Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой.
Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности.
d=10 (ед. длины)
Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр.
Диагональ вписанного прямоугольника - диаметр описанной окружности.
d=2R=10
Диагональ вписанного прямоугольника равна 10 (ед. длины)
––––––––––
Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой.
Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности.
d=10 (ед. длины)