BE || СD по условию, BC || AD, т.к. ABCD - трапеция => BCDE - параллелограмм. Тогда <C=<BED=115°. <D=180-<C=180-115=65°, <B=<ABE+<CBE=75+65=140°.
2) Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований.
AK=PD=(AD-BC)/2=(7-5)/2=1.
<CDP=60° => <DCP=90-60=30°. Тогда CD=2*PD=2*1=2 (катет, лежащий против угла в 30°)
Доказательство: 1) Отложим на стороне AB отрезок AD равный стороне AC. Так как AD<AB, то точка D лежит между точками A и B. Следовательно, угол 1 являетсячастью угла С, значит, угол С > угла 1. Угол 2 - внешний угол треугольника BDC, поэтому угол 2>угла B. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, угол C>угла 1, угол 1=углу 2, угол 2>угла B. Отсюда следует что угол С > угла B. 2) Пусть в треугольнике АВС угол С>угла В. Докаже что АВ>АС. Предположим что это не так. тогда либо АВ=АС, либо АВ<АС. В первом случае треугольник АВС равнобедренный и, значит угол С = углу В. Во втором случае угол В> угла С(против большей стороны лежит и больший угол из доказательства 1). И то и другое противоречит условию: угол С > угла В. Поэтому наше предположение неверно, и, следовательно АВ>ВС. Теорема доказана
Объяснение:
1) Внешний угол △АВЕ <BED=<BAE+<ABE=40+75=115°.
BE || СD по условию, BC || AD, т.к. ABCD - трапеция => BCDE - параллелограмм. Тогда <C=<BED=115°. <D=180-<C=180-115=65°, <B=<ABE+<CBE=75+65=140°.
2) Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований.
AK=PD=(AD-BC)/2=(7-5)/2=1.
<CDP=60° => <DCP=90-60=30°. Тогда CD=2*PD=2*1=2 (катет, лежащий против угла в 30°)
1) Отложим на стороне AB отрезок AD равный стороне AC. Так как AD<AB, то точка D лежит между точками A и B. Следовательно, угол 1 являетсячастью угла С, значит, угол С > угла 1. Угол 2 - внешний угол треугольника BDC, поэтому угол 2>угла B. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, угол C>угла 1, угол 1=углу 2, угол 2>угла B. Отсюда следует что угол С > угла B.
2) Пусть в треугольнике АВС угол С>угла В. Докаже что АВ>АС.
Предположим что это не так. тогда либо АВ=АС, либо АВ<АС. В первом случае треугольник АВС равнобедренный и, значит угол С = углу В. Во втором случае угол В> угла С(против большей стороны лежит и больший угол из доказательства 1). И то и другое противоречит условию: угол С > угла В. Поэтому наше предположение неверно, и, следовательно АВ>ВС. Теорема доказана