1. По одному из теорем сторон ∆, мы узнаем, что AD=AB-BD=19-9,5=9,5см
DC=BC-BD=19-9,5=9,5см
2. По правилу: катет лежащий напротив угла в 30° равен половине гипотенузы
Находим, что если АD=1/2AB, то угол ABD=30°. То же самое и с ∆BCD.
3. Из правила: сумма острых углов прямоугольного треугольника равна 90°
Находим, что угол ВАС= углу ВСА= 60°
4. Теперь найдем общий угол АВС= АВD+CBD=30+30=60°
5. Это уже дополнительно, но из всего этого можно добавить, что ∆АВС не только равнобедренный, но и равносторонний
6. Также хочу уточнить, что высота ВD разделила ∆АВС на прямоугольные треугольники ∆ ABD и ∆BCD, в которых угол D равен 90°
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
1. По одному из теорем сторон ∆, мы узнаем, что AD=AB-BD=19-9,5=9,5см
DC=BC-BD=19-9,5=9,5см
2. По правилу: катет лежащий напротив угла в 30° равен половине гипотенузы
Находим, что если АD=1/2AB, то угол ABD=30°. То же самое и с ∆BCD.
3. Из правила: сумма острых углов прямоугольного треугольника равна 90°
Находим, что угол ВАС= углу ВСА= 60°
4. Теперь найдем общий угол АВС= АВD+CBD=30+30=60°
5. Это уже дополнительно, но из всего этого можно добавить, что ∆АВС не только равнобедренный, но и равносторонний
6. Также хочу уточнить, что высота ВD разделила ∆АВС на прямоугольные треугольники ∆ ABD и ∆BCD, в которых угол D равен 90°
ОТМЕТЬ, КАК ЛУЧШИЙ ОТВЕТпостроим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9