1. В основании правильной треугольной пирамиды - правильный треугольник, а высота проецируется в его центр. SO - высота пирамиды, ОС - проекция SC на плоскость основания, значит ∠SCO - угол наклона бокового ребра к плоскости основания - искомый. ОС - радиус окружности, описанной около правильного треугольника: ОС = АВ√3/2 = 6√3/3 = 2√3. ΔSOC: ∠SOC = 90°, ctg∠SCO = OC / SO = 2√3 / 8 = √3/4
2. Основание правильной четырехугольной пирамиды - квадрат, боковые грани - равнобедренные треугольники. Пусть Н - середина CD, тогда SH - медиана и высота равнобедренного треугольника SDC, ОН - средняя линия ΔADC, ⇒ ОН║AD, ⇒ OH⊥CD. Значит ∠SHO - линейный угол двугранного угла наклона боковой грани к основанию - искомый. Радиус окружности, описанной около квадрата, равен половине его диагонали, значит АС = 8. АС = АВ√2 ⇒ АВ = АС/√2 = 8 / √2 = 4√2 - сторона квадрата ОН = AD/2 = 2√2 ΔSOH: ∠SOH = 90°, cos∠SHO = OH / SH = 2√2/7
3. Sбок = 2πRH = 160π см² ⇒ 2RH = 160 см² ABCD - осевое сечение. Sabcd = 2R·H = 160 см² ABEF - сечение, параллельное оси и отстоящее от нее на 6 см. Так как H = R - 2,то 2R(R - 2) = 160 R² - 2R - 80 = 0 D = 4 + 320 = 324 R = (2 + 18)/2 = 10 см R = (2 - 18)/2 = - 8 - не подходит по смыслу задачи H = 10 - 2 = 8 см Если Н -середина ВЕ, то ОН = 6 см - расстояние от оси до сечения. ΔОНВ: ∠ОНВ = 90°, по теореме Пифагора НВ = √(ОВ² - ОН²) = √(100 - 36) = 8 см ВЕ = 2НВ = 16 см Sabef = BE · H = 16 · 8 = 128 см²
4. ΔАВС - данное сечение - равнобедренный треугольник (АВ = АС = l образующие) ∠АВС = ∠АСВ = 75°, ⇒ ∠ВАС = 30°. Sabc = 1/2 · AB · AC · sin ∠BAC = 16 см² l² · sin30° = 32 l² = 64 l = 8 cм ΔАОВ: ∠ВАО = 30° по условию. cos∠BAO = AO/AB cos30° = h/l ⇒ h = l · cos30° = 8√3/2 = 4√3 см r = OB = AB · sin30° = 8 · 1/2 = 4 см Площадь осевого сечения: Sakc = 1/2 · KC · AO = r · h = 16√3 см² Sполн = πr(l + r) = π · 4 · (8 + 4) = 48π см²
1) Находим углы по теореме косинусов и площадь по теореме Герона: a b c p 2p S 4 8 5 8.5 17 8.18153 cos A= (АВ²+АС²-ВС²) / (2*АВ*АС) cos A = 0.9125 cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) cos B = -0.575 cos C= (АC²+ВС²-АD²) / (2*АC*ВС) cos С = 0.859375 Аrad = 0.421442 Brad = 2.1834 Сrad = 0.53675 Аgr = 24.14685 Bgr = 125.0996 Сgr = 30.75352.
2) Длины высот: АА₂ = 2S / BС = 4.090767 BB₂ = 2S / АС = 2.04538 CC₂ = 2S / ВА = 3.272614.
3) Длины медиан: Медиана, соединяющая вершину треугольника А с серединой стороны а равна a b c 4 8 5 ма мв мс 6.364 2.12132 5.80948
4) Длины биссектрис: Биссектриса угла А выражается:
a b c 4 8 5 βa βb βc 6.0177 2.04879 5.14242.
Деление сторон биссектрисами: a b c ВК КС АЕ ЕС АМ МВ 1.53847 2.46154 4.4444 3.5556 3.333 1.6667. Деление биссктрис точкой пересечения βa βb βc АО ОК ВО ОЕ СО ОМ 4.601799 1.41593 1.08465 0.96413 3.62994 1.512475 Отношение отрезков биссектрис от точки пересечения: АО/ОК ВО/ОЕ СО/ОМ 3.25 1.125 2.4
5) Радиус вписанной в треугольник окружности равен:
r = 0.9625334.
Расстояние от угла до точки касания окружности: АК=АМ BК=BЕ CМ=CЕ 4.5 0.5 3.5
SO - высота пирамиды, ОС - проекция SC на плоскость основания, значит ∠SCO - угол наклона бокового ребра к плоскости основания - искомый.
ОС - радиус окружности, описанной около правильного треугольника:
ОС = АВ√3/2 = 6√3/3 = 2√3.
ΔSOC: ∠SOC = 90°, ctg∠SCO = OC / SO = 2√3 / 8 = √3/4
2. Основание правильной четырехугольной пирамиды - квадрат, боковые грани - равнобедренные треугольники.
Пусть Н - середина CD, тогда SH - медиана и высота равнобедренного треугольника SDC, ОН - средняя линия ΔADC, ⇒ ОН║AD, ⇒ OH⊥CD.
Значит ∠SHO - линейный угол двугранного угла наклона боковой грани к основанию - искомый.
Радиус окружности, описанной около квадрата, равен половине его диагонали, значит АС = 8.
АС = АВ√2 ⇒ АВ = АС/√2 = 8 / √2 = 4√2 - сторона квадрата
ОН = AD/2 = 2√2
ΔSOH: ∠SOH = 90°, cos∠SHO = OH / SH = 2√2/7
3. Sбок = 2πRH = 160π см² ⇒ 2RH = 160 см²
ABCD - осевое сечение.
Sabcd = 2R·H = 160 см²
ABEF - сечение, параллельное оси и отстоящее от нее на 6 см.
Так как H = R - 2,то
2R(R - 2) = 160
R² - 2R - 80 = 0
D = 4 + 320 = 324
R = (2 + 18)/2 = 10 см R = (2 - 18)/2 = - 8 - не подходит по смыслу задачи
H = 10 - 2 = 8 см
Если Н -середина ВЕ, то ОН = 6 см - расстояние от оси до сечения.
ΔОНВ: ∠ОНВ = 90°, по теореме Пифагора
НВ = √(ОВ² - ОН²) = √(100 - 36) = 8 см
ВЕ = 2НВ = 16 см
Sabef = BE · H = 16 · 8 = 128 см²
4. ΔАВС - данное сечение - равнобедренный треугольник (АВ = АС = l образующие)
∠АВС = ∠АСВ = 75°, ⇒ ∠ВАС = 30°.
Sabc = 1/2 · AB · AC · sin ∠BAC = 16 см²
l² · sin30° = 32
l² = 64
l = 8 cм
ΔАОВ: ∠ВАО = 30° по условию.
cos∠BAO = AO/AB
cos30° = h/l ⇒ h = l · cos30° = 8√3/2 = 4√3 см
r = OB = AB · sin30° = 8 · 1/2 = 4 см
Площадь осевого сечения:
Sakc = 1/2 · KC · AO = r · h = 16√3 см²
Sполн = πr(l + r) = π · 4 · (8 + 4) = 48π см²
a b c p 2p S
4 8 5 8.5 17 8.18153
cos A= (АВ²+АС²-ВС²) / (2*АВ*АС)
cos A = 0.9125
cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС)
cos B = -0.575
cos C= (АC²+ВС²-АD²) / (2*АC*ВС)
cos С = 0.859375
Аrad = 0.421442 Brad = 2.1834 Сrad = 0.53675
Аgr = 24.14685 Bgr = 125.0996 Сgr = 30.75352.
2) Длины высот:
АА₂ = 2S / BС = 4.090767
BB₂ = 2S / АС = 2.04538
CC₂ = 2S / ВА = 3.272614.
3) Длины медиан:
Медиана, соединяющая вершину треугольника А с серединой стороны а равна
a b c
4 8 5
ма мв мс
6.364 2.12132 5.80948
4) Длины биссектрис:
Биссектриса угла А выражается:
a b c
4 8 5
βa βb βc
6.0177 2.04879 5.14242.
Деление сторон биссектрисами:
a b c
ВК КС АЕ ЕС АМ МВ
1.53847 2.46154 4.4444 3.5556 3.333 1.6667.
Деление биссктрис точкой пересечения
βa βb βc
АО ОК ВО ОЕ СО ОМ
4.601799 1.41593 1.08465 0.96413 3.62994 1.512475
Отношение отрезков биссектрис от точки пересечения:
АО/ОК ВО/ОЕ СО/ОМ
3.25 1.125 2.4
5) Радиус вписанной в треугольник окружности равен:
r = 0.9625334.
Расстояние от угла до точки касания окружности:
АК=АМ BК=BЕ CМ=CЕ
4.5 0.5 3.5
6) Радиус описанной окружности треугольника, (R):
R = 4.889058651.