В треугольнике АВС проведена медиана АМ и на луче АМ отмечена точка D, отличная от точки А, так, что DM=АМ. Докажите, что CD=AB. Оформите с рисунком и со словами дано
Так как точка Р является серединой АВ, а точка Q серединой АС, то РQ – средняя линия треугольника АВС.
Средняя линия параллельна одной из сторон треугольника. Тоесть PQ//BC.
Тогда угол AQP=угол АСВ как соответственные при параллельных прямых PQ u BC и секущей АС;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум углам.
Так как точка Р является серединой АВ, то АР/АВ=1/2, а точка Q серединой АС, то AQ/AC=1/2.
Следовательно: АР/АВ=AQ/AС, тоесть стороны ∆APQ относятся к сторонам ∆АВС в равных отношениях, тоесть стороны одного треугольника пропорциональны сторонам другого;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум пропорциональным сторонам и углу между ними.
Так как точка Р является серединой АВ, а точка Q серединой АС, то РQ – средняя линия треугольника АВС.
Средняя линия параллельна одной из сторон треугольника. Тоесть PQ//BC.
Тогда угол AQP=угол АСВ как соответственные при параллельных прямых PQ u BC и секущей АС;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум углам.
Так как точка Р является серединой АВ, то АР/АВ=1/2, а точка Q серединой АС, то AQ/AC=1/2.
Следовательно: АР/АВ=AQ/AС, тоесть стороны ∆APQ относятся к сторонам ∆АВС в равных отношениях, тоесть стороны одного треугольника пропорциональны сторонам другого;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум пропорциональным сторонам и углу между ними.
Треугольник АВС с координатами вершин A(4;2; 1), B(0;-6;2),C(0;-2;-6) является равнобедренным, так как АВ = АС = 9 см
Объяснение:
1) Найдём длину стороны АВ, для чего вычислим расстояние между точками A (4; 2; 1) и B (0; -6; 2) :
d = √[(xb - xa)^2 + (yb - ya)^2 + (zb - za)^2] =
= √[(0 - 4)^2 + (-6 - 2)^2 + (2 - 1)^2] =
= √[(-4)^2 + (-8)^2 + 1^2] = √(16 + 64 + 1) = √81 = 9.
Таким образом, длина стороны АВ = 9 см.
2) Найдём длину стороны ВС, для чего вычислим расстояние между точками В (0; -6; 2) и С (0; -2; -6) :
d = √[(xc - xb)^2 + (yc - yb)^2 + (zc - zb)^2] =
= √[(0 - 0)^2 + (-2 - (-6))^2 + (-6 - 2)^2] =
= √(0^2 + 4^2 + (-8)^2) = √(0 + 16 + 64) = √80 ≈ 8,944
Таким образом, длина стороны ВС ≈ 8,944 см
3) Найдём длину стороны АС, для чего вычислим расстояние между точками A (4; 2; 1) и С (0; -2; -6) :
d = √[(xc - xa)^ 2 + (yc - ya)^2 + (zc - za)^2] =
= √[(0 - 4)^2 + (-2 - 2)^2 + (-6 - 1)^2] =
= √[(-4)^2 + (-4)^2 + (-7)^2] = √(16 + 16 + 49) = √81 = 9.
Таким образом, длина стороны АС = 9 см
4) Как следует из выполненных расчетов, в треугольнике АВС, заданного координатами своих вершин A(4;2; 1), B(0;-6;2),C(0;-2;-6),
длина стороны АВ равна длине стороны АС, в силу чего данный треугольник является равнобедренным:
ответ: Треугольник АВС с координатами вершин A(4;2; 1), B(0;-6;2),C(0;-2;-6) является равнобедренным, так как АВ = АС = 9 см