Для начала найдём все углы: <A - <B/2; <B = <C-30.
Объявим угол <A — как переменную "x", угол B объявим как: 2x, угол C объявим как: 2x+30.
<A = x
<B = 2x
<C = 2x+30
x+2x+2x+30 = 180°
5x+30 = 180°
5x = 150° ⇒ x = 150/5 = 30° ⇒ <A = 30°
<B = 30*2 = 60°
<C = <B+30 = 90°.
Как мы видим, наш треугольник ABC — прямоугольный, так как имеет один прямой угол(<C).
AB — гипотенуза, известный нам катет — BC.
Катет BC — лежит напротив угла A(30°).
Теорема 30-градусного угла в прямоугольном треугольнике такова: катет, протолежащий углу 30-и градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: BC = AB/2; BC = 2 ⇒ AB = 2*2 = 4.
Вывод: AB = 4.
Находим координаты векторов и модули (вложение 1).
Находим модуль вектора а, скалярное произведение векторов а и b, угол между векторами c и d (вложение 2).
Приводим более подробное решение по определению угла меду векторами c и d (пусть они записаны как a и b).
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 2 · 5 + (-9) · (-1) + (-10) · 5 = 10 + 9 - 50 = -31 .
Найдем длины векторов:
|a| = √ax2 + ay2 + az2 = √22 + (-9)2 + (-10)2 = √4 + 81 + 100 = √185 .
|b| = √bx2 + by2 + bz2 = √52 + (-1)2 + 52 = √25 + 1 + 25 = √51 .
Найдем угол между векторами:
cos α = (a · b ) / |a||b| .
cos α = -31 / (√185*√51) =
= - 31/√9435 = -31*√9435 / 9435 ≈ -0.319146.
Для начала найдём все углы: <A - <B/2; <B = <C-30.
Объявим угол <A — как переменную "x", угол B объявим как: 2x, угол C объявим как: 2x+30.
<A = x
<B = 2x
<C = 2x+30
x+2x+2x+30 = 180°
5x+30 = 180°
5x = 150° ⇒ x = 150/5 = 30° ⇒ <A = 30°
<B = 30*2 = 60°
<C = <B+30 = 90°.
Как мы видим, наш треугольник ABC — прямоугольный, так как имеет один прямой угол(<C).
AB — гипотенуза, известный нам катет — BC.
Катет BC — лежит напротив угла A(30°).
Теорема 30-градусного угла в прямоугольном треугольнике такова: катет, протолежащий углу 30-и градусов в прямоугольном треугольнике — равен половине гипотенузы.
Тоесть: BC = AB/2; BC = 2 ⇒ AB = 2*2 = 4.
Вывод: AB = 4.
Находим координаты векторов и модули (вложение 1).
Находим модуль вектора а, скалярное произведение векторов а и b, угол между векторами c и d (вложение 2).
Приводим более подробное решение по определению угла меду векторами c и d (пусть они записаны как a и b).
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 2 · 5 + (-9) · (-1) + (-10) · 5 = 10 + 9 - 50 = -31 .
Найдем длины векторов:
|a| = √ax2 + ay2 + az2 = √22 + (-9)2 + (-10)2 = √4 + 81 + 100 = √185 .
|b| = √bx2 + by2 + bz2 = √52 + (-1)2 + 52 = √25 + 1 + 25 = √51 .
Найдем угол между векторами:
cos α = (a · b ) / |a||b| .
cos α = -31 / (√185*√51) =
= - 31/√9435 = -31*√9435 / 9435 ≈ -0.319146.