Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
60 градусов - сумма двух равных углов в этом треугольнике (Так как если бы это были другие углы, то сумма была бы равно 150 градусов, следовательно 2 равных угла по 75 градусов. Тогда сумма двух углов не может быть равной 60 (ну раз 2 по 75)). Значит 1 угол = 2 углу = 60/2=30 градусов. Значит, 3 угол равен 180-60=120 градусов. Отношение углов равно 30/30 : 30/30 : 120/30= 1 : 1 : 4 Следовательно отновение углов первого треугольника равно отношению углов второго треугольника, следовательно треугольники подобны. P.S. Я не знаю как подробней начало объяснить
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
60 градусов - сумма двух равных углов в этом треугольнике (Так как если бы это были другие углы, то сумма была бы равно 150 градусов, следовательно 2 равных угла по 75 градусов. Тогда сумма двух углов не может быть равной 60 (ну раз 2 по 75)). Значит 1 угол = 2 углу = 60/2=30 градусов. Значит, 3 угол равен 180-60=120 градусов. Отношение углов равно 30/30 : 30/30 : 120/30= 1 : 1 : 4
Следовательно отновение углов первого треугольника равно отношению углов второго треугольника, следовательно треугольники подобны.
P.S. Я не знаю как подробней начало объяснить