Рисуешь ромб АВСД, АС -20см. угол в равен углу д и равен 60 градусам. теперь решение : 1)рассмотрим треугольник овс, тк вд- диагональ то угол овс -30градусов, угол вос - 90градусов , всо - 60 градусов 2) анологично рассматриваешь треугольник аов, углы те же самые 3) тк угол вао равен 60 градусов, угол всо равен тоже 60 гр, угол авс равен 60 гр отсюда следует что треугольники авс и асд равны и они равносторонние , отсюда следует диагональ равна стороне, короче периметр равен 20умножить на 4 и равно 80 Удачи :)
12√3 см²
Объяснение:
Дано: АВСД - трапеция, АВ=СД=4 см, ВС=4 см, ∠АВС=120°. Найти S(АВСД).
ΔАВС - равнобедренный, т.к. АВ=ВС, значит, ∠ВАС=∠ВСА=(180-120):2=30°
∠САД=∠ВСА=30° как внутренние накрест лежащие при ВС║АД и секущей АС
∠ВАД=∠Д=30+30=60°
Проведем высоты ВК и СН. Рассмотрим ΔСДН - прямоугольный.
∠Д=60°, ∠НСД=90-60=30°, значит ДН=1/2 СД=2 см по свойству катета, лежащего против угла 30°; АК=ДН=2 см;
АД=АК+КН+ДН=2+4+2=8 см
Найдем высоту трапеции по теореме Пифагора
СН=√(СД²-ДН²)=√(16-4)=√12=2√3 см.
S=(ВС+АД):2*СН=(4+8):2*2√3=12√3 см²
1)рассмотрим треугольник овс, тк вд- диагональ то угол овс -30градусов, угол вос - 90градусов , всо - 60 градусов
2) анологично рассматриваешь треугольник аов, углы те же самые
3) тк угол вао равен 60 градусов, угол всо равен тоже 60 гр, угол авс равен 60 гр отсюда следует что треугольники авс и асд равны и они равносторонние , отсюда следует диагональ равна стороне, короче периметр равен 20умножить на 4 и равно 80
Удачи :)