Пусть дан параллелограмм авсd и его диагональ ас. полный угол а равен сумме меньших углов, из которых он состоит, т.е. ваd = вас + dас = 40 + 20 = 60 градусов. теперь рассмотрим сам параллелограмм. сторона ав является секущей по отношению к пареллельным прям вс и аd (противолежащие стороны параллелограмма параллельны друг другу). по теореме о углах, образованный при пересечении параллельных прямых секущей, сумма односторонних углов, коими являются углы авс и ваd, равна 180 градусам, т.е. авс + ваd = 180. авс = 180 - ваd = 180 - 60 = 120 градусов. больший угол параллелограмма авс равен 180 градусам.
Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
Итак, треугольники АОD и СОВ подобны с коэффициентом подобия
ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7.
ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.