В треугольнике АВС угол С=100°, АС=3см, ВС=4см. Постройте треугольник АВС и его образ при осевой симметрии относительно прямой, содержащей его а)медиану АМ б) высоту АН
ДЛИНЫ СТОРОН ТРЕУГОЛЬНИКА Длина BС (a) = 7,07106781186548 Длина AС (b) = 4,24264068711928 Длина AB (c) = 5,65685424949238
ПЕРИМЕТР ТРЕУГОЛЬНИКА Периметр = 16,9705627484771
ПЛОЩАДЬ ТРЕУГОЛЬНИКА Площадь = 12
УГЛЫ ТРЕУГОЛЬНИКА Угол BAC при 1 вершине A: в радианах = 1,5707963267949 в градусах = 90 Угол ABC при 2 вершине B: в радианах = 0,643501108793284 в градусах = 36,869897645844 Угол BCA при 3 вершине C: в радианах = 0,927295218001612 в градусах = 53,130102354156
ЦЕНТР ТЯЖЕСТИ Координаты Om(2,66666666666667; 2,33333333333333)
ВПИСАННАЯ ОКРУЖНОСТЬ Центр Ci(3; 2) Радиус = 1,4142135623731
ОПИСАННАЯ ОКРУЖНОСТЬ Центр Co(2,5; 3,5) Радиус = 3,53553390593274
МЕДИАНЫ ТРЕУГОЛЬНИКА Медиана АM1 из вершины A: Координаты M1(2,5; 3,5) Длина AM1 = 3,53553390593274
ВЫСОТЫ ТРЕУГОЛЬНИКА Высота AH1 из вершины A: Координаты H1(3,48; 3,36) Длина AH1 = 3,39411254969543
В кубе ABCDA₁B₁C₁D₁ найдите угол между плоскостями ВА₁С₁ и ВАD₁ Пусть ребра куба равны а. Тогда диагонали граней равны а√2 Плоскость ВАD₁ = прямоугольник ВАD₁С₁. Плоскость ВА₁С₁ - правильный треугольник со сторонами а√2 (диагонали граней куба). Искомый угол - угол между высотой А₁Н ( она ⊥ ВС₁) правильного треугольника ВА₁С₁ и средней линией ОН прямоугольника ВАD₁С₁ (она⊥ ВС₁). OA₁=AO= (a√2)/2_ 1) tg∠A₁HO=A₁O:OH=[a√2):2]:a=1/√2= 0,7071 - это тангенс угла 35º15’ или 2) sin ∠A₁HO=A₁O:A₁HA₁H=a√2*sin60º=1/√3=0,5773, это синус того же угла 35º15
РАСЧЕТ ТРЕУГОЛЬНИКА
заданного координатами вершин:
Вершина 1: A(3; 0)
Вершина 2: B(-1; 4)
Вершина 3: C(6; 3)
ДЛИНЫ СТОРОН ТРЕУГОЛЬНИКА
Длина BС (a) = 7,07106781186548
Длина AС (b) = 4,24264068711928
Длина AB (c) = 5,65685424949238
ПЕРИМЕТР ТРЕУГОЛЬНИКА
Периметр = 16,9705627484771
ПЛОЩАДЬ ТРЕУГОЛЬНИКА
Площадь = 12
УГЛЫ ТРЕУГОЛЬНИКА
Угол BAC при 1 вершине A:
в радианах = 1,5707963267949
в градусах = 90
Угол ABC при 2 вершине B:
в радианах = 0,643501108793284
в градусах = 36,869897645844
Угол BCA при 3 вершине C:
в радианах = 0,927295218001612
в градусах = 53,130102354156
ЦЕНТР ТЯЖЕСТИ
Координаты Om(2,66666666666667; 2,33333333333333)
ВПИСАННАЯ ОКРУЖНОСТЬ
Центр Ci(3; 2)
Радиус = 1,4142135623731
ОПИСАННАЯ ОКРУЖНОСТЬ
Центр Co(2,5; 3,5)
Радиус = 3,53553390593274
МЕДИАНЫ ТРЕУГОЛЬНИКА
Медиана АM1 из вершины A:
Координаты M1(2,5; 3,5)
Длина AM1 = 3,53553390593274
ВЫСОТЫ ТРЕУГОЛЬНИКА
Высота AH1 из вершины A:
Координаты H1(3,48; 3,36)
Длина AH1 = 3,39411254969543
Пусть ребра куба равны а.
Тогда диагонали граней равны а√2
Плоскость ВАD₁ = прямоугольник ВАD₁С₁.
Плоскость ВА₁С₁ - правильный треугольник со сторонами а√2 (диагонали граней куба).
Искомый угол - угол между высотой А₁Н ( она ⊥ ВС₁) правильного треугольника ВА₁С₁ и средней линией ОН прямоугольника ВАD₁С₁ (она⊥ ВС₁).
OA₁=AO= (a√2)/2_
1) tg∠A₁HO=A₁O:OH=[a√2):2]:a=1/√2= 0,7071 - это тангенс угла 35º15’
или
2) sin ∠A₁HO=A₁O:A₁HA₁H=a√2*sin60º=1/√3=0,5773, это синус того же угла 35º15