ответ:1056+1584√3 (см²)
Объяснение: 1)Пусть параллелограмм АВСД-нижнее основание призмы,А₁В₁С₁Д₁-верхнее основание; ∠А=30°, тогда ∠Д=180°-30°=150°. 2)Боковая поверхность призмы S= P·h, P= 2·(АД+СД)= 2( 16+24√3)=32+48√3. 3)Вычислим большую диагональ основания АС по теореме косинусов из ΔАДС: АС²= АД²+СД²- 2·АС·СД·CosД= 16²+(24√3)² - 2·16·24√3·Cos150°= 256+1728 - 2·16·24√3· (-Cos30°)=256+1728 + 2·16·24√3· √3/2 =256+1728 +1152=3136, ⇒АС = √3136= 56. 4)Рассмотрим прямоугольный треугольник АА₁С, по условию большая диагональ призмы А₁С=65 см.⇒h²= AA₁²= А₁С²- AC²65²-56²= 1089, h=√1089=33 (cм) 5) Боковая поверхность призмы S= P·h =(32+48√3) P= 2·(АД+СД)= 2( 16+24√3)=(32+48√3)· 33 =1056+1584√3 (см²)
Докажем сначала, что это параллелограмм. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Пусть точка О1(х;у) середина АС тогда
х=(-6+6)/2=0; у=(1-4)/2=-1,5.
Пусть точка О2(х;у) середина BD тогда
х=(0+0)/2=0; у=(5-8)/2=-1,5.
Значит О1 совпадает с О2 - значит ABCD параллелограмм.
О(0;-1,5) - точки пересечения его диагоналей.
Докажем что это прямоугольник. Если диагонали параллелограмма равны то он прямоугольник.
АС^2=(6+6)^2+(-4-1)^2
АС^2=12^2+(-5)^2
АС^2=144+25
AC^2=169
AC=13
BD^2=(0+0)^2+(-8-5)^2
BD^2=0^2+(-13)^2
BD^2=0+169
BD^2=169
BD=13
AC=BD
ABCD - прямоугольник
ответ:1056+1584√3 (см²)
Объяснение: 1)Пусть параллелограмм АВСД-нижнее основание призмы,А₁В₁С₁Д₁-верхнее основание; ∠А=30°, тогда ∠Д=180°-30°=150°. 2)Боковая поверхность призмы S= P·h, P= 2·(АД+СД)= 2( 16+24√3)=32+48√3. 3)Вычислим большую диагональ основания АС по теореме косинусов из ΔАДС: АС²= АД²+СД²- 2·АС·СД·CosД= 16²+(24√3)² - 2·16·24√3·Cos150°= 256+1728 - 2·16·24√3· (-Cos30°)=256+1728 + 2·16·24√3· √3/2 =256+1728 +1152=3136, ⇒АС = √3136= 56. 4)Рассмотрим прямоугольный треугольник АА₁С, по условию большая диагональ призмы А₁С=65 см.⇒h²= AA₁²= А₁С²- AC²65²-56²= 1089, h=√1089=33 (cм) 5) Боковая поверхность призмы S= P·h =(32+48√3) P= 2·(АД+СД)= 2( 16+24√3)=(32+48√3)· 33 =1056+1584√3 (см²)
Докажем сначала, что это параллелограмм. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Пусть точка О1(х;у) середина АС тогда
х=(-6+6)/2=0; у=(1-4)/2=-1,5.
Пусть точка О2(х;у) середина BD тогда
х=(0+0)/2=0; у=(5-8)/2=-1,5.
Значит О1 совпадает с О2 - значит ABCD параллелограмм.
О(0;-1,5) - точки пересечения его диагоналей.
Докажем что это прямоугольник. Если диагонали параллелограмма равны то он прямоугольник.
АС^2=(6+6)^2+(-4-1)^2
АС^2=12^2+(-5)^2
АС^2=144+25
AC^2=169
AC=13
BD^2=(0+0)^2+(-8-5)^2
BD^2=0^2+(-13)^2
BD^2=0+169
BD^2=169
BD=13
AC=BD
ABCD - прямоугольник