№1. Треугольники ВКМ и BKN равны по стороне и двум прилежащим углам.
Значит BM = BN. Значит тр-ки BMN и АВС подобны по 1 признаку подобия(по 2-м пропорциональным сторонам и углу между ними.)
Значит у них равны все углы, то есть MN||АС, значит MN перпендикулярно ВК,
что и требовалось доказать.
Угол BNK = углу BMK = 110 град. (из равенства тех же тр-ов: BKM и BKN). №2. Во влажениях! №3. В Δ АВС угол АВС равен 90-15=75° ВΔ ВАД угол АВД равен 75-15=60 ВДА=90-60=30° АВ, как противолежащая углу 30, равна половине ВД. ВД=2*3=6 см Рассмотрим Δ ВДС. В нем равные углы при основании ВС. Поэтому Δ ВДС - равнобедренный. ДС=ВД=6 см. Сумма двух сторон треугольника должна быть больше третьей стороны. Сторона ВД+ДС=12см ВС < 12см Длина стороны ВС не может быть равна 12 см
Значит BM = BN. Значит тр-ки BMN и АВС подобны по 1 признаку подобия(по 2-м пропорциональным сторонам и углу между ними.)
Значит у них равны все углы, то есть MN||АС, значит MN перпендикулярно ВК,
что и требовалось доказать.
Угол BNK = углу BMK = 110 град. (из равенства тех же тр-ов: BKM и BKN). №2. Во влажениях! №3. В Δ АВС угол АВС равен
90-15=75°
ВΔ ВАД угол АВД равен
75-15=60
ВДА=90-60=30°
АВ, как противолежащая углу 30, равна половине ВД.
ВД=2*3=6 см
Рассмотрим Δ ВДС.
В нем равные углы при основании ВС.
Поэтому Δ ВДС - равнобедренный.
ДС=ВД=6 см.
Сумма двух сторон треугольника должна быть больше третьей стороны.
Сторона ВД+ДС=12см
ВС < 12см
Длина стороны ВС не может быть равна 12 см
В прямоугольном треугольнике катет, лежащий напротив угла в 30 градусов равен половине гипотенузы.
Дан треугольник АВС, в котором ∠С = 90°, ∠А = 30°, надо доказать, что
ВС = 1/2АВ.
∠В = 90° - ∠А = 90° - 30° = 60° (сумма острых углов прямоугольного треугольника равна 90°).
Построим треугольник АСD, равный треугольнику АСВ с общим катетом АС. Тогда ∠BAD = ∠BAC + ∠DAC = 2 · 30° = 60°,
∠ADC = ∠ABC = 60°, ⇒ ΔBAD равносторонний, BD = AB.
АС - высота равностороннего треугольника BAD, значит и медиана, тогда
BC = CD = 1/2BD = 1/2AB.