АВСД - трапеция, Р=25 см , ∠Д=60° , АС - биссектриса, АС⊥СД . ΔАСД: ∠Д=60° , ∠АСД=90° ⇒ ∠САД=30° . Катет СД, лежащий против угла в 30° = половине гипотенузы АД ⇒ АД=2·СД Если обозначим СД=а, то АД=2а. Так как АС - биссектриса, то ∠ВАС=∠САД=30°. ∠ВАД=∠ВАС+∠САД=30°+30°=60° ⇒ ∠ВАД=∠АДС ⇒ трапеция равнобедренная ⇒ АВ=СД=а . ∠САД=∠ВСА как внутренние накрест лежащие ⇒ ∠ВСА=30°. Так как ∠ВАС=∠ВСА=30°, то ΔАВС - равнобедренный ⇒ АВ=ВС=а. Периметр Р=АВ+ВС+СД+АД=а+а+а+2а=5а 5а=25 ⇒ а=5 АВ=ВС=СД=5 см , АД=10 см .
Конус. Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk. Радиус его основания равен: Rk = H/√3. Площадь основания Sok = πRk² = πH²/3. Площадь Sбок боковой поверхности равна: Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3. Площадь S полной поверхности равна: S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр. Радиус его основания равен: Rц = H/2. Площадь основания Soц = πRц² = πH²/4. Площадь Sбок боковой поверхности равна: Sбок = 2πRцH = 2π(H/2)*H = πH². Площадь S полной поверхности равна: S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).
ΔАСД: ∠Д=60° , ∠АСД=90° ⇒ ∠САД=30° .
Катет СД, лежащий против угла в 30° = половине гипотенузы АД ⇒
АД=2·СД
Если обозначим СД=а, то АД=2а.
Так как АС - биссектриса, то ∠ВАС=∠САД=30°.
∠ВАД=∠ВАС+∠САД=30°+30°=60° ⇒
∠ВАД=∠АДС ⇒ трапеция равнобедренная ⇒ АВ=СД=а .
∠САД=∠ВСА как внутренние накрест лежащие ⇒ ∠ВСА=30°.
Так как ∠ВАС=∠ВСА=30°, то ΔАВС - равнобедренный ⇒
АВ=ВС=а.
Периметр Р=АВ+ВС+СД+АД=а+а+а+2а=5а
5а=25 ⇒ а=5
АВ=ВС=СД=5 см , АД=10 см .
Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk.
Радиус его основания равен: Rk = H/√3.
Площадь основания Sok = πRk² = πH²/3.
Площадь Sбок боковой поверхности равна:
Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3.
Площадь S полной поверхности равна:
S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр.
Радиус его основания равен: Rц = H/2.
Площадь основания Soц = πRц² = πH²/4.
Площадь Sбок боковой поверхности равна:
Sбок = 2πRцH = 2π(H/2)*H = πH².
Площадь S полной поверхности равна:
S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).