В треугольнике DEF известно, что DE = EF - 41 см. Серединный перпендикуляр стороны DE пересекает сторону DF в точке К. Найдите DF, если периметр треугольника EKF равен 80 см.
ММ₁К₁К - трапеция СС₁- средняя линия трапеции СС₁=(ММ₁+КК₁)/2=(16+6)/2=11
2) Точка M имеет абсциссу х=√(12) =2√3 ординату у=0 Точка К имеет асбциссу х=-2 ордината у находится из уравнения у²=12-4 у=√8 у=2√2 точка O (0;0) ОМ имеет длину 2√3 ОМ- радиус вектор ОМ=2√3 ОМ=ОК=2√3
tg∠КОМ=-√2 ( так как тангенс смежного с ним угла α равен √2 tg α=2√2/2=√2) cos²∠КОМ= 1/(1+tg²∠KOM)=1/3 sin²∠КОМ=1-cos²∠KOM=1-(1/3)=2/3 sin ∠KOM=√(2/3) S=ОК·ОМ· sin ∠KOM/2= (2√3)²·(√(2/3))/2=2√6 кв. ед
Через вершину B треугольника ABC проводим фронталь и горизонталь.
Переводим ABC в проецирующее положение. Для этого перпендикулярно В1Е1 вводим новую фронтальную плоскость Р4. Проецируем на неё точку S и треугольник ABC.
Из точки S4 проводим перпендикуляр к А4С4.
Длина отрезкаS4S – искомое расстояние между плоскостью треугольника ABC и точкой S.
Если требуется аналитическая проверка найденного расстояния, то по координатам точек А, В и С находим уравнение плоскости АВС:
95x -111y +154z - 6145 = 0.
Затем находим расстояние от точки S до плоскости АВС.
Для вычисления расстояния от точки S(Sx; Sy; Sz) до плоскости Ax + By + Cz + D = 0 используем формулу:
ММ₁К₁К - трапеция
СС₁- средняя линия трапеции
СС₁=(ММ₁+КК₁)/2=(16+6)/2=11
2) Точка M имеет абсциссу х=√(12) =2√3 ординату у=0
Точка К имеет асбциссу х=-2 ордината у находится из уравнения
у²=12-4
у=√8
у=2√2
точка O (0;0)
ОМ имеет длину 2√3
ОМ- радиус вектор
ОМ=2√3
ОМ=ОК=2√3
tg∠КОМ=-√2 ( так как тангенс смежного с ним угла α равен √2 tg α=2√2/2=√2)
cos²∠КОМ= 1/(1+tg²∠KOM)=1/3
sin²∠КОМ=1-cos²∠KOM=1-(1/3)=2/3
sin ∠KOM=√(2/3)
S=ОК·ОМ· sin ∠KOM/2= (2√3)²·(√(2/3))/2=2√6 кв. ед
Ход решения
Через вершину B треугольника ABC проводим фронталь и горизонталь.
Переводим ABC в проецирующее положение. Для этого перпендикулярно В1Е1 вводим новую фронтальную плоскость Р4. Проецируем на неё точку S и треугольник ABC.
Из точки S4 проводим перпендикуляр к А4С4.
Длина отрезкаS4S – искомое расстояние между плоскостью треугольника ABC и точкой S.
Если требуется аналитическая проверка найденного расстояния, то по координатам точек А, В и С находим уравнение плоскости АВС:
95x -111y +154z - 6145 = 0.
Затем находим расстояние от точки S до плоскости АВС.
Для вычисления расстояния от точки S(Sx; Sy; Sz) до плоскости Ax + By + Cz + D = 0 используем формулу:
d = |A·Mx + B·My + C·Mz + D| /√(A² + B² + C²)
Подставим в формулу данные:
d = |95·65 + (-111)·10 + 154·85 + (-6145)| √(95² + (-111)² + 154²) = |6175 - 1110 + 13090 - 6145| /√(9025 + 12321 + 23716) =
= 12010 /√45062 = 6005√45062 /22531 ≈ 56.57672.
Полученное расчётное значение полностью совпадает с графическим расчётом.