В треугольнике KLM проведена биссектриса ME. Найдите величину угла LME, если ∠LKM = 31° и ∠KLM = 73°.
2. В треугольнике ABC проведена биссектриса AL, угол ALC равен 117°, угол ABC равен 95°. Найдите угол ACB. ответ дайте в градусах.
3. В треугольнике FGH углы F и H равны 40° и 60° соответственно. Найдите угол между высотой GL и биссектрисой GR.
4. В равнобедренном треугольнике АВС с основанием ВС проведена медиана АМ. Найдите медиану АМ, если периметр треугольника АВС равен 54 см, а периметр треугольника АВМ равен 46 см.
5. Отрезки AB и CD — диаметры окружности с центром O. Найдите периметр треугольника AOD, если известно, что CB = 11 см, AB = 15 см.
А соединяя середины медиан мы ещё в два раза уменьшаем размеры треугольника, поэтому его площадь будет ещё в 4 раза меньше. Итого
мы должны площадь данного треугольника разделить на 16 и получим 1
ответ: 1
Прямоугольный треугольник можно достроить до прямоугольника, при этом очевидно, что искомый треугольник будет занимать ровно половину этого прямоугольника, а значит и его площадь будет равна половине площади прямоугольника. Sпр = произведению сторон, Sпр тр = 1\2 *Sпр = 1\2 *произведение катетов. Любой из катетов по сути является высотой, а второй - основанием.
В случае, когда искомый треугольник, как оговаривалось выше, не является прямоугольным, а представляется в виде двух прямоугольных, не трудно заметить, что две стороны прямоугольных, а именно их основание составляют основание исходного, а высоты этих треугольников совпадают с высотой исходного.
Нагляднее показать формулой:
S не пр = Sпр1 + Sпр2 = 1\2 *а*b + 1\2*b*c = 1\2*b*(a+c), где b - высота, а (a+c) - основание исходного треугольника. Понимаю, что в тексте не очень, но постарался донести идею.
Трапеция аналогично представляется в виде двух треугольников и прямоугольника. Затем проводится аналогичное доказательство. Вот.