Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
АВ = √((5-2)²+(3+4)²) = √(3²+7²) = √(9+49) = √58
АС = √((5+3)²+(3-5)²) = √(8²+2²) = √(64+4) = √68
ВС = √((-3-2)²+(5+4)²) = √(5²+9²) = √(25+81) = √106
по теореме косинусов вычисляем углы
ВС² = AB² + AC² - 2*AB*AC*cos∠A
106 = 58 + 68 - 2√58√68*cos∠A
106 = 126 - 4√986*cos∠A
cos∠A = 5/√986
∠A = arccos(5/√986) ≈ 80,84°
теперь для угла В
AC² = AB² + BC² - 2*AB*BC*cos∠B
68 = 58 + 106 - 2*√58*√106*cos∠B
96 = 2*√58*√106*cos∠B
24 = √1537*cos∠B
cos∠B = 24/√1537
∠B = arccos(24/√1537) ≈ 52,25°
И для угла С
AB² = AC² + BC² - 2*AC*BC*cos∠C
58 = 68 + 106 - 2√68√106*cos∠C
116 = 2√68√106*cos∠C
cos∠C = 29/√1802
∠C = arccos(29/√1802) ≈ 46,91°